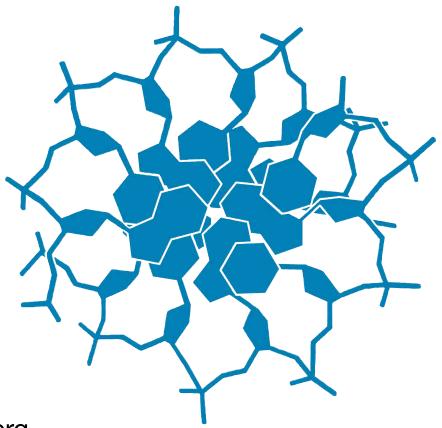

Biochemistry EIGHTH EDITION


Jeremy M. Berg John L. Tymoczko Gregory J. Gatto, Jr Lubert Stryer

Biochemistry EIGHTH EDITION

Jeremy M. Berg John L. Tymoczko Gregory J. Gatto, Jr. Lubert Stryer

Jeremy M. Berg John L. Tymoczko Gregory J. Gatto, Jr. Lubert Stryer

A Macmillan Education Imprint

Publisher: Kate Ahr Parker Senior Acquisitions Editor: Lauren Schultz Developmental Editor: Irene Pech Editorial Assistants: Shannon Moloney and Nandini Ahuja Senior Project Editor: Denise Showers with Sherrill Redd Manuscript Editors: Irene Vartanoff and Mercy Heston Cover and Interior Design: Vicki Tomaselli Illustrations: Jeremy Berg with Network Graphics, Gregory J. Gatto, Jr. Illustration Coordinator: Janice Donnola Photo Editor: Christine Buese Photo Researcher: Jacquelyn Wong Production Coordinator: Paul Rohloff Executive Media Editor: Amanda Dunning Media Editor: Donna Brodman Executive Marketing Manager: Sandy Lindelof Composition: Aptara[®], Inc. Printing and Binding: RR Donnelley

Library of Congress Control Number: 2014950359

Gregory J. Gatto, Jr., is an employee of GlaxoSmithKline (GSK), which has not supported or funded this work in any way. Any views expressed herein do not necessarily represent the views of GSK.

ISBN-13: 978-1-4641-2610-9 ISBN-10: 1-4641-2610-0

©2015, 2012, 2007, 2002 by W. H. Freeman and Company; © 1995, 1988, 1981, 1975 by Lubert Stryer

All rights reserved

Printed in the United States of America

First printing

W. H. Freeman and Company41 Madison AvenueNew York, NY 10010

www.whfreeman.com

To our teachers and our students

ABOUT THE AUTHORS

JEREMY M. BERG received his B.S. and M.S. degrees in Chemistry from Stanford (where he did research with Keith Hodgson and Lubert Stryer) and his Ph.D. in Chemistry from Harvard with Richard Holm. He then completed a postdoctoral fellowship with Carl Pabo in Biophysics at Johns Hopkins University School of Medicine. He was an Assistant Professor in the Department of Chemistry at Johns Hopkins from 1986 to 1990. He then moved to Johns Hopkins University School of Medicine as Professor and Director of the Department of Biophysics and Biophysical Chemistry, where he remained until 2003. He then became Director of the National Institute of General Medical Sciences at the National Institutes of Health. In 2011, he moved to the University of Pittsburgh where he is now Professor of Computational and Systems Biology and Pittsburgh Foundation Professor and Director of the Institute for Personalized Medicine. He served as President of the American Society for Biochemistry and Molecular Biology from 2011–2013. He is a Fellow of the American Association for the Advancement of Science and a member of the Institute of Medicine of the National Academy of Sciences. He received the American Chemical Society Award in Pure Chemistry (1994) and the Eli Lilly Award for Fundamental Research in Biological Chemistry (1995), was named Maryland Outstanding Young Scientist of the Year (1995), received the Harrison Howe Award (1997), and received public service awards from the Biophysical Society, the American Society for Biochemistry and Molecular Biology, the American Chemical Society, and the American Society for Cell Biology. He also received numerous teaching awards, including the W. Barry Wood Teaching Award (selected by medical students), the Graduate Student Teaching Award, and the Professor's Teaching Award for the Preclinical Sciences. He is coauthor, with Stephen J. Lippard, of the textbook Principles of Bioinorganic Chemistry.

JOHN L. TYMOCZKO is Towsley Professor of Biology at Carleton College, where he has taught since 1976. He currently teaches Biochemistry, Biochemistry Laboratory, Oncogenes and the Molecular Biology of Cancer, and Exercise Biochemistry and coteaches an introductory course, Energy Flow in Biological Systems. Professor Tymoczko received his B.A. from the University of Chicago in 1970 and his Ph.D. in Biochemistry from the University of Chicago with Shutsung Liao at the Ben May Institute for Cancer Research. He then had a postdoctoral position with Hewson Swift of the Department of Biology at the University of Chicago. The focus of his research has been on steroid receptors, ribonucleoprotein particles, and proteolytic processing enzymes.

GREGORY J. GATTO, JR., received his A.B. degree in Chemistry from Princeton University, where he worked with Martin F. Semmelhack and was awarded the Everett S. Wallis Prize in Organic Chemistry. In 2003, he received his M.D. and Ph.D. degrees from the Johns Hopkins University School of Medicine, where he studied the structural biology of peroxisomal targeting signal recognition with Jeremy M. Berg and received the Michael A. Shanoff Young Investigator Research Award. He completed a postdoctoral fellowship in 2006 with Christopher T. Walsh at Harvard Medical School, where he studied the biosynthesis of the macrolide immunosuppressants. He is currently a Senior Scientific Investigator in the Heart Failure Discovery Performance Unit at GlaxoSmithKline.

LUBERT STRYER is Winzer Professor of Cell Biology, Emeritus, in the School of Medicine and Professor of Neurobiology, Emeritus, at Stanford University, where he has been on the faculty since 1976. He received his M.D. from Harvard Medical School. Professor Stryer has received many awards for his research on the interplay of light and life, including the Eli Lilly Award for Fundamental Research in Biological Chemistry, the Distinguished Inventors Award of the Intellectual Property Owners' Association, and election to the National Academy of Sciences and the American Philosophical Society. He was awarded the National Medal of Science in 2006. The publication of his first edition of *Biochemistry* in 1975 transformed the teaching of biochemistry. For several generations of students and teachers, *Biochemistry* has been an invaluable resource, presenting the concepts and details of molecular structure, metabolism, and laboratory techniques in a streamlined and engaging way. *Biochemistry*'s success in helping students learn the subject for the first time is built on a number of hallmark features:

- Clear writing and simple illustrations. The language of biochemistry is made as accessible as possible for students learning the subject for the first time. To complement the straightforward language and organization of concepts in the text, figures illustrate a single concept at a time to help students see main points without the distraction of excess detail.
- **Physiological relevance**. It has always been our goal to help students connect biochemistry to their own lives on a variety of scales. Pathways and processes are presented in a physiological context so

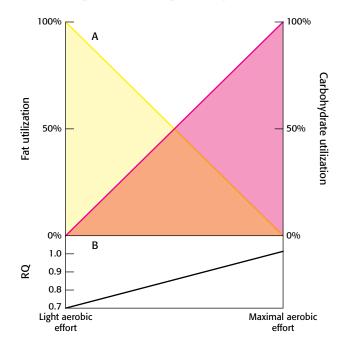
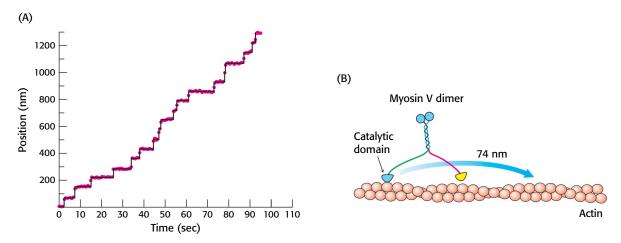
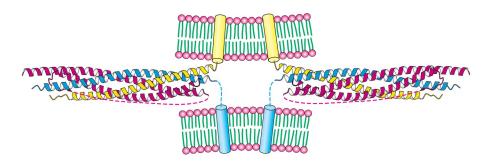



Figure 27.12 An idealized representation of fuels use as a function of aerobic exercise intensity. (A) With increased exercise intensity, the use of fats as fuels falls as the utilization of glucose increases. (B) The respiratory quotient (RQ) measures the alteration in fuel use.

students can see how biochemistry works in the body and under different conditions, and Clinical Application sections in every chapter show students how the concepts they are studying impact human health. The eighth edition includes a number of new Clinical Application sections based on recent discoveries in biochemistry and health. (For a full list, see p. xi)

- Evolutionary perspective. Discussions of evolution are woven into the narrative of the text, just as evolution shapes every pathway and molecular structure described in the text. Molecular Evolution sections highlight important milestones in the evolution of life as a way to provide context for the processes and molecules being discussed. (For a full list, see p. x)
- **Problem-solving practice**. Every chapter of *Biochemistry* provides numerous opportunities for students to practice problem-solving skills and apply the concepts described in the text. End-of-chapter problems are divided into three categories to address different problem-solving skills: Mechanism problems ask students to suggest or describe a chemical mechanism; Data interpretation problems ask students to draw conclusions from data taken from real research papers; and chapter integration problems require students to connect concepts from across chapters. Further problem-solving practice is provided online, on the *Biochemistry* LaunchPad. (For more details on LaunchPad resources, see p. viii)
- A variety of molecular structures. All molecular structures in the book, with few exceptions, have been selected and rendered by Jeremy Berg and Gregory Gatto to emphasize the aspect of structure most important to the topic at hand. Students are introduced to realistic renderings of molecules through a molecular model "primer" in the appendices to Chapters 1 and 2 so they are well-equipped to recognize and interpret the structures throughout the book. Figure legends direct students explicitly to the key features of a model, and often include PDB numbers so the reader can access the file used in generating the structure from the Protein Data Bank website (www.pdb.org). Students


Figure 9.48 Single molecule motion. (A) A trace of the position of a single dimeric myosin V molecule as it moves across a surface coated with actin filaments. (B) A model of how the dimeric molecule moves in discrete steps with an average size of 74 ± 5 nm. [Data from A. Yildiz et al., Science 300(5628)2061–2065, 2003.]

can explore molecular structures further online through the Living Figures, in which they can rotate 3D models of molecules and view alternative renderings.

In this revision of *Biochemistry*, we focused on building on the strengths of the previous editions to present biochemistry in an even more clear and streamlined manner, as well as incorporating exciting new advances from the field. Throughout the book, we have updated explanations of basic concepts and bolstered them with examples from new research. Some new topics that we present in the eighth edition include:

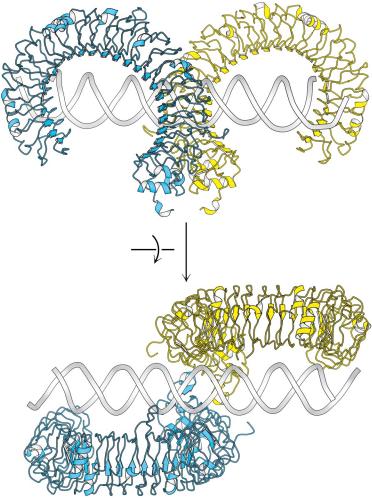
- Environmental factors that influence human biochemistry (Chapter 1)
- Genome editing (Chapter 5)
- Horizontal gene transfer events that may explain unexpected branches of the evolutionary tree (Chapter 6)
- Penicillin irreversibly inactivating a key enzyme in bacterial cell-wall synthesis (Chapter 8)

- Scientists watching single molecules of myosin move (Chapter 9)
- Glycosylation functions in nutrient sensing (Chapter 11)
- The structure of a SNARE complex (Chapter 12)
- The mechanism of ABC transporters (Chapter 13)
- The structure of the gap junction (Chapter 13)
- The structural basis for activation of the β -adrenergic receptor (Chapter 14)
- Excessive fructose consumption can lead to pathological conditions (Chapter 16)
- Alterations in the glycolytic pathway by cancer cells (Chapter 16)
- Regulation of mitochondrial ATP synthase (Chapter 18)
- Control of chloroplast ATP synthase (Chapter 19)
- Activation of rubisco by rubisco activase (Chapter 20)

Figure 12.39 SNARE complexes initiate membrane fusion. The SNARE protein synaptobrevin (yellow) from one membrane forms a tight four-helical bundle with the corresponding SNARE proteins syntaxin-1 (blue) and SNAP25 (red) from a second membrane. The complex brings the membranes close together, initiating the fusion event. [Drawn from 1SFC.pdb.]

- The role of the pentose phosphate pathway in rapid cell growth (Chapter 20)
- Biochemical characteristics of muscle fiber types (Chapter 21)
- Alteration of fatty acid metabolism in tumor cells (Chapter 22)
- Biochemical basis of neurological symptoms of phenylketonuria (Chapter 24)
- Ribonucleotide reductase as a chemotherapeutic target (Chapter 25)

- The role of excess choline in the development of heart disease (Chapter 26)
- Cycling of the LDL receptor is regulated (Chapter 26)
- The role of ceramide metabolism in stimulating tumor growth (Chapter 26)
- The extraordinary power of DNA repair systems illustrated by *Deinococcus radiodurans* (Chapter 28)
- The structural details of ligand binding by TLRs (Chapter 34)


🐼 LaunchPad

All of the new media resources for *Biochemistry* will be available in our new system.

www.macmillanhighered.com/launchpad/berg8e

LaunchPad is a dynamic, fully integrated learning environment that brings together all of our teaching and learning resources in one place. It also contains the fully interactive **e-Book** and other newly updated resources for students and instructors, including the following:

• NEW Case Studies are a series of biochemistry case studies you can integrate into your course. Each case study gives students practice in working with

Figure 34.3 Recognition of a PAMP by a Toll-like receptor. The structure of TLR3 bound to its PAMP, a fragment of double-stranded RNA, as seen from the side (top) and from above (bottom). *Notice* that the PAMP induces receptor dimerization by binding the surfaces on the side of each of the extracellular domains. [Drawn from 3CIY.pdb].

data, developing critical thinking skills, connecting topics, and applying knowledge to real scenarios. We also provide instructional guidance with each case study (with suggestions on how to use the case in the classroom) and aligned assessment questions for quizzes and exams.

- Newly Updated Clicker Questions allow instructors to integrate active learning in the classroom and to assess students' understanding of key concepts during lectures. Available in Microsoft Word and PowerPoint (PPT).
- Newly Updated Lecture PowerPoints have been developed to minimize preparation time for new users of the book. These files offer suggested lectures including key illustrations and summaries that instructors can adapt to their teaching styles.
 - Updated Layered PPTs deconstruct key concepts, sequences, and processes from the textbook images, allowing instructors to present complex ideas step-by-step.
 - Updated Textbook Images and Tables are offered as high-resolution JPEG files. Each image has been fully optimized to increase type sizes and adjust color saturation. These images have been tested in a large lecture hall to ensure maximum clarity and visibility.
 - The Clinical Companion, by Gregory Raner, The University of North Carolina at Greensboro and Douglas Root, University of North Texas, applies concepts that students have learned in the book to novel medical situations. Students read clinical case studies and use basic biochemistry concepts to solve the medical mysteries, applying and reinforcing what they learn in lecture and from the book.
 - Hundreds of self-graded practice problems allow students to test their understanding of concepts explained in the text, with immediate feedback.
 - The Metabolic Map helps students understand the principles and applications of the core metabolic pathways. Students can work through guided tutorials with embedded assessment questions, or explore the Metabolic Map on their own using the dragging and zooming functionality of the map.
 - **Jmol tutorials** by Jeffrey Cohlberg, California State University at Long Beach, teach students

how to create models of proteins in Jmol based on data from the Protein Data Bank. By working through the tutorial and answering assessment questions at the end of each exercise, students learn to use this important database and fully realize the relationships between the structure and function of enzymes.

- Living figures allow students to explore protein structure in 3-D. Students can zoom and rotate the "live" structures to get a better understanding of their three-dimensional nature and can experiment with different display styles (space-filling, ball-andstick, ribbon, backbone) by means of a user-friendly interface.
- **Concept-based tutorials** by Neil D. Clarke help students build an intuitive understanding of some of the more difficult concepts covered in the textbook.
- Animated techniques help students grasp experimental techniques used for exploring genes and proteins.
- **NEW animations** show students biochemical processes in motion. The eighth edition includes many new animations.
- Online end-of-chapter questions are assignable and self-graded multiple-choice versions of the

end-of-chapter questions in the book, giving students a way to practice applying chapter content in an online environment.

- Flashcards are an interactive tool that allows students to study key terms from the book.
- LearningCurve is a self-assessment tool that helps students evaluate their progress. Students can test their understanding by taking an online multiplechoice quiz provided for each chapter, as well as a general chemistry review.

Updated Student Companion

[1-4641-8803-3]

For each chapter of the textbook, the *Student Companion* includes:

- Chapter Learning Objectives and Summary
- Self-Assessment Problems, including multiplechoice, short-answer, matching questions, and challenge problems, and their answers
- **Expanded Solutions** to end-of-chapter problems in the textbook

MOLECULAR EVOLUTION

This icon signals the start of the many discussions that highlight protein commonalities or other molecular evolutionary insights.

Only L amino acids make up proteins (p. 29) Why this set of 20 amino acids? (p. 35) Sickle-cell trait and malaria (p. 206) Additional human globin genes (p. 208) Catalytic triads in hydrolytic enzymes (p. 258) Major classes of peptide-cleaving enzymes (p. 260) Common catalytic core in type II restriction enzymes (p. 275) P-loop NTPase domains (p. 280) Conserved catalytic core in protein kinases (p. 298) Why do different human blood types exist? (p. 331) Archaeal membranes (p. 346) Ion pumps (p. 370) P-type ATPases (p. 374) ATP-binding cassettes (p. 374) Sequence comparisons of Na^+ and Ca^{2+} channels (p. 382) Small G proteins (p. 414) Metabolism in the RNA world (p. 444) Why is glucose a prominent fuel? (p. 451) NAD^+ binding sites in dehydrogenases (p. 465) Isozymic forms of lactate dehydrogenase (p. 487) Evolution of glycolysis and gluconeogenesis (p. 487) The α -ketoglutarate dehydrogenase complex (p. 505) Domains of succinyl CoA synthetase (p. 507) Evolution of the citric acid cycle (p. 516) Mitochondrial evolution (p. 525) Conserved structure of cytochrome c (p. 541) Common features of ATP synthase and G proteins (p. 548) Pigs lack uncoupling protein 1 (UCP-1) and brown fat (p. 556) Related uncoupling proteins (p. 556) Chloroplast evolution (p. 568) Evolutionary origins of photosynthesis (p. 584) Evolution of the C4 pathway (p. 601) The relationship of the Calvin cycle and the pentose phosphate pathway (p. 610) Increasing sophistication of glycogen phosphorylase regulation (p. 629)

Glycogen synthase is homologous to glycogen phosphorylase (p. 631) A recurring motif in the activation of carboxyl groups (p. 649) Prokaryotic counterparts of the ubiquitin pathway and the proteasome (p. 686) A family of pyridoxal-dependent enzymes (p. 692) Evolution of the urea cycle (p. 696) The P-loop NTPase domain in nitrogenase (p. 716) Conserved amino acids in transaminases determine amino acid chirality (p. 721) Feedback inhibition (p. 731) Recurring steps in purine ring synthesis (p. 749) Ribonucleotide reductases (p. 755) Increase in urate levels during primate evolution (p. 761) Deinococcus radiodurans illustrates the power of DNA repair systems (p. 828) DNA polymerases (p. 829) Thymine and the fidelity of the genetic message (p. 849) Sigma factors in bacterial transcription (p. 865) Similarities in transcription between archaea and eukaryotes (p. 876) Evolution of spliceosome-catalyzed splicing (p. 888) Classes of aminoacyl-tRNA synthetases (p. 901) Composition of the primordial ribosome (p. 903) Homologous G proteins (p. 908) A family of proteins with common ligand-binding domains (p. 930) The independent evolution of DNA-binding sites of regulatory proteins (p. 931) Key principles of gene regulation are similar in bacteria and archaea (p. 937) CpG islands (p. 949) Iron-response elements (p. 955) miRNAs in gene evolution (p. 957) The odorant-receptor family (p. 963) Photoreceptor evolution (p. 973) The immunoglobulin fold (p. 988)

CLINICAL APPLICATIONS

8

This icon signals the start of a clinical application in the text. Additional, briefer clinical correlations appear in the text as appropriate.

Osteogenesis imperfecta (p. 46) Protein-misfolding diseases (p. 56) Protein modification and scurvy (p. 57) Antigen/antibody detection with ELISA (p. 82) Synthetic peptides as drugs (p. 92) PCR in diagnostics and forensics (p.142) Gene therapy (p. 164) Aptamers in biotechnology and medicine (p. 187) Functional magnetic resonance imaging (p. 193) 2,3-BPG and fetal hemoglobin (p. 201) Carbon monoxide poisoning (p. 201) Sickle-cell anemia (p. 205) Thalassemia (p. 207) Aldehyde dehydrogenase deficiency (p. 228) Action of penicillin (p. 239) Protease inhibitors (p. 263) Carbonic anhydrase and osteopetrosis (p. 264) Isozymes as a sign of tissue damage (p. 293) Trypsin inhibitor helps prevent pancreatic damage (p. 302) Emphysema (p. 303) Blood clotting involves a cascade of zymogen activations (p. 303) Vitamin K (p. 306) Antithrombin and hemorrhage (p. 307) Hemophilia (p.308) Monitoring changes in glycosylated hemoglobin (p. 321) Erythropoietin (p. 327) Hurler disease (p. 327) Mucins (p. 329) Blood groups (p. 331) I-cell disease (p. 332) Influenza virus binding (p. 335) Clinical applications of liposomes (p. 349) Aspirin and ibuprofen (p. 353) Digitalis and congestive heart failure (p. 373) Multidrug resistance (p. 374) Long QT syndrome (p. 388) Signal-transduction pathways and cancer (p. 416) Monoclonal antibodies as anticancer drugs (p. 416) Protein kinase inhibitors as anticancer drugs (p. 417) G-proteins, cholera and whooping cough (p. 417) Vitamins (p. 438)

Triose phosphate isomerase deficiency (p. 454) Excessive fructose consumption (p. 466) Lactose intolerance (p. 467) Galactosemia (p. 468) Aerobic glycolysis and cancer (p. 474) Phosphatase deficiency (p. 512) Defects in the citric acid cycle and the development of cancer (p. 513) Beriberi and mercury poisoning (p. 515) Frataxin mutations cause Friedreich's ataxia (p. 531) Reactive oxygen species (ROS) are implicated in a variety of diseases (p. 539) ROS may be important in signal transduction (p. 540) IF1 overexpression and cancer (p. 554) Brown adipose tissue (p. 555) Mild uncouplers sought as drugs (p.557)Mitochondrial diseases (p. 557) Glucose 6-phosphate dehydrogenase deficiency causes drug-induced hemolytic anemia (p. 610) Glucose 6-phosphate dehydrogenase deficiency protects against malaria (p. 612) Developing drugs for type 2 diabetes (p. 636) Glycogen-storage diseases (p. 637) Chanarin-Dorfman syndrome (p. 648) Carnitine deficiency (p. 650) Zellweger syndrome (p. 657) Diabetic ketosis (p. 659) Ketogenic diets to treat epilepsy (p. 660) Some fatty acids may contribute to pathological conditions (p. 661) The use of fatty acid synthase inhibitors as drugs (p. 667) Effects of aspirin on signaling pathways (p. 669) Diseases resulting from defects in transporters of amino acids (p. 682) Diseases resulting from defects in E3 proteins (p. 685) Drugs target the ubiquitin-proteasome system (p.687) Using proteasome inhibitors to treat tuberculosis (p. 687) Blood levels of aminotransferases indicate liver damage (p. 691) Inherited defects of the urea cycle (hyperammonemia) (p. 697) Alcaptonuria, maple syrup urine disease, and phenylketonuria (p. 705)

High homocysteine levels and vascular disease (p. 726) Inherited disorders of porphyrin metabolism (p. 737) Anticancer drugs that block the synthesis of thymidylate (p. 757) Ribonucleotide reductase is a target for cancer therapy (p. 759) Adenosine deaminase and severe combined immunodeficiency (p. 760) Gout (p. 761) Lesch–Nyhan syndrome (p. 761) Folic acid and spina bifida (p. 762) Enzyme activation in some cancers to generate phosphocholine (p. 770) Excess choline and heart disease (p. 771) Gangliosides and cholera (p. 773) Second messengers derived from sphingolipids and diabetes (p. 773) Respiratory distress syndrome and Tay–Sachs disease (p. 774) Ceramide metabolism stimulates tumor growth (p. 775) Phosphatidic acid phosphatase and lipodystrophy (p. 776) Hypercholesterolemia and atherosclerosis (p. 784) Mutations in the LDL receptor (p. 785) LDL receptor cycling is regulated (p. 787) The role of HDL in protecting against arteriosclerosis (p. 787) Clinical management of cholesterol levels (p. 788) Bile salts are derivatives of cholesterol (p. 789) The cytochrome P450 system is protective (p. 791) A new protease inhibitor also inhibits a cytochrome P450 enzyme (p. 792) Aromatase inhibitors in the treatment of breast and ovarian cancer (p. 794) Rickets and vitamin D (p. 795) Caloric homeostasis is a means of regulating body weight

The brain plays a key role in caloric homeostasis (p. 804) Diabetes is a common metabolic disease often resulting from obesity (p. 807) Exercise beneficially alters the biochemistry of cells (p. 813) Food intake and starvation induce metabolic changes (p. 816) Ethanol alters energy metabolism in the liver (p. 819) Antibiotics that target DNA gyrase (p. 839) Blocking telomerase to treat cancer (p. 845) Huntington disease (p. 850) Defective repair of DNA and cancer (p. 850) Detection of carcinogens (Ames test) (p. 852) Translocations can result in diseases (p. 855) Antibiotic inhibitors of transcription (p. 869) Burkitt lymphoma and B-cell leukemia (p. 876) Diseases of defective RNA splicing (p. 884) Vanishing white matter disease (p. 913) Antibiotics that inhibit protein synthesis (p. 914) Diphtheria (p. 914) Ricin, a lethal protein-synthesis inhibitor (p. 915) Induced pluripotent stem cells (p. 947) Anabolic steroids (p. 951) Color blindness (p. 974) The use of capsaicin in pain management (p. 978) Immune-system suppressants (p. 994) MHC and transplantation rejection (p. 1002) AIDS (p. 1003) Autoimmune diseases (p. 1005) Immune system and cancer (p. 1005) Vaccines (p. 1006) Charcot-Marie-Tooth disease (p. 1022) Taxol (p. 1023)

(p. 802)

ACKNOWLEDGMENTS

Writing a popular textbook is both a challenge and an honor. Our goal is to convey to our students our enthusiasm and understanding of a discipline to which we are devoted. They are our inspiration. Consequently, not a word was written or an illustration constructed without the knowledge that bright, engaged students would immediately detect vagueness and ambiguity. We also thank our colleagues who supported, advised, instructed, and simply bore with us during this arduous task.

Paul Adams University of Arkansas, Fayetteville Kevin Ahern Oregon State University Zulfigar Ahmad A.T. Still University of Health Sciences Young-Hoon An Wayne State University **Richard Amasino** University of Wisconsin Kenneth Balazovich University of Michigan Donald Beitz Iowa State University Matthew Berezuk Azusa Pacific University Melanie Berkmen Suffolk University Steven Berry University of Minnesota, Duluth Loren Bertocci Marian University Mrinal Bhattacharjee Long Island University Elizabeth Blinstrup-Good University of Illinois Brian Bothner Montana State University Mark Braiman Syracuse University David Brown Florida Gulf Coast University Donald Burden Middle Tennessee State University Nicholas Burgis Eastern Washington University W. Malcom Byrnes Howard University College of Medicine Graham Carpenter Vanderbilt University School of Medicine John Cogan The Ohio State University

Jeffrey Cohlberg California State University, Long Beach David Daleke Indiana University John DeBanzie Northeastern State University Cassidy Dobson St. Cloud State University Donald Dovle Georgia Institute of Technology Ludeman Eng Virginia Tech Carvn Evilia Idaho State University **Kirsten Fertuck** Northeastern University Brent Feske Armstrong Atlantic University Patricia Flatt Western Oregon University Wilson Francisco Arizona State University Gerald Frenkel Rutgers University Ronald Gary University of Nevada, Las Vegas Eric R. Gauthier Laurentian University Glenda Gillaspy Virginia Tech **James** Gober UCLA Christina Goode California State University, Fullerton Nina Goodev Montclair State University Eugene Grgory Virginia Tech Robert Grier Atlanta Metropolitan State College Neena Grover Colorado College

We are grateful to our colleagues throughout the world who patiently answered our questions and shared their insights into recent developments.

We also especially thank those who served as reviewers for this new edition. Their thoughtful comments, suggestions, and encouragement have been of immense help to us in maintaining the excellence of the preceding editions. These reviewers are:

> Paul Hager East Carolina University Ann Hagerman Miami University Mary Hatcher-Skeers Scripps College Diane Hawley University of Oregon Blake Hill Medical College of Wisconsin Pui Ho Colorado State University Charles Hoogstraten Michigan State University Frans Huijing University of Miami Kathryn Huisinga Malone University Cristi Junnes Rocky Mountain College Lori Isom University of Central Arkansas Nitin Jain University of Tennessee Blythe Janowiak Saint Louis University Gerwald Jogl Brown University Kelly Johanson Xavier University of Louisiana Jerry Johnson University of Houston-Downtown Todd Johnson Weber State University David Josephy University of Guelph Michael Kalafatis Cleveland State University Marina Kazakevich University of Massachusetts-Dartmouth Jong Kim Alabama A&M University

Sung-Kun Kim Baylor University Roger Koeppe University of Arkansas, Fayetteville Dmitry Kolpashchikov University of Central Florida Min-Hao Kuo Michigan State University Isabel Larraza North Park University Mark Larson Augustana College Charles Lawrence Montana State University Pan Li State University of New York, Albany Darlene Loprete Rhodes College Greg Marks Carroll University Michael Massiah George Washington University Keri McFarlane Northern Kentucky University Michael Mendenhall University of Kentucky Stephen Mills University of San Diego Smita Mohanty Auburn University Debra Moriarity University of Alabama, Huntsville Stephen Munroe Marquette University Jeffrey Newman Lycoming College William Newton Virginia Tech Alfred Nichols Jacksonville State University **Brian Nichols** University of Illinois, Chicago Allen Nicholson Temple University Brad Nolen University of Oregon

Pamela Osenkowski Loyola University, Chicago Xiaping Pan East Carolina University Stefan Paula Northern Kentucky University David Pendergrass University of Kansas-Edwards Wendy Pogozelski State University of New York, Geneseo Gary Powell Clemson University Geraldine Prody Western Washington University Joseph Provost University of San Diego Greg Raner University of North Carolina, Greensboro Tanea Reed Eastern Kentucky University Christopher Reid Bryant University Denis Revie California Lutheran University Douglas Root University of North Texas Johannes Rudolph University of Colorado Brian Sato University of California, Irvine Glen Sauer Fairfield University Joel Schildbach Johns Hopkins University Stylianos Scordilis Smith College Ashikh Seethy Maulana Azad Medical College, New Delhi Lisa Shamansky California State University, San Bernardino Bethel Sharma Sewanee: University of the South Nicholas Silvaggi University of Wisconsin-Milwaukee

Kerry Smith Clemson University Narashima Sreerama Colorado State University Wesley Stites University of Arkansas Ion Stoltzfus Michigan State University Gerald Stubbs Vanderbilt University Takita Sumter Winthrop University Anna Tan-Wilson State University of New York, Binghamton Steven Theg University of California, Davis Marc Tischler University of Arizona Ken Traxler Bemidji State University Brian Trewyn Colorado School of Mines Vishwa Trivedi Bethune Cookman University Panaviotis Vacratsis University of Windsor Peter van der Geer San Diego State University Jeffrev Voigt Albany College of Pharmacy and Health Sciences Grover Waldrop Louisiana State University Xuemin Wang University of Missouri Yuqi Wang Saint Louis University Rodney Weilbaecher Southern Illinois University Kevin Williams Western Kentucky University Laura Zapanta University of Pittsburgh Brent Znosko Saint Louis University

We have been working with the people at W. H. Freeman/ Macmillan Higher Education for many years now, and our experiences have always been enjoyable and rewarding. Writing and producing the eighth edition of *Biochemistry* confirmed our belief that they are a wonderful publishing team and we are honored to work with **xiv** them. Our Macmillan colleagues have a knack for undertaking stressful, but exhilarating, projects and reducing the stress without reducing the exhilaration and a remarkable ability to coax without ever nagging. We have many people to thank for this experience, some of whom are first timers to the *Biochemistry* project. We are delighted to work with Senior Acquisitions Editor, Lauren Schultz, for the first time. She was unfailing in her enthusiasm and generous with her support. Another new member of the team was our developmental editor, Irene Pech. We have had the pleasure of working with a number of outstanding developmental editors over the years, and Irene continues this tradition. Irene is thoughtful, insightful, and very efficient at identifying aspects of our writing and figures that were less than clear. Lisa Samols, a former developmental editor, served as a consultant, archivist for previous editions, and a general source of publishing knowledge. Senior Project Editor Deni Showers, with Sherrill Redd, managed the flow of the entire project, from copyediting through bound book, with admirable efficiency. Irene Vartanoff and Mercy Heston, our manuscript editors, enhanced the literary consistency and clarity of the text. Vicki Tomaselli, Design Manager, produced a design and layout that makes the book uniquely attractive while still emphasizing its ties to past editions. Photo Editor Christine Buese and Photo Researcher Jacalyn Wong found the photographs that we hope make the text not only more inviting, but also fun to look through. Janice Donnola, Illustration Coordinator, deftly directed the rendering of new illustrations. Paul Rohloff, Production Coordinator, made sure that the significant difficulties of scheduling, composition, and manufacturing were smoothly overcome. Amanda Dunning and Donna Brodman did a wonderful job in their management of the media program. In addition, Amanda ably coordinated the print supplements plan. Special thanks also to editorial assistants Shannon Moloney and Nandini Ahuja. Sandy Lindelof, Executive Marketing Manager, enthusiastically introduced this newest edition of Biochemistry to the academic world. We are deeply appreciative of Craig Blever and his sales staff for their support. Without their able and enthusiastic presentation of our text to the academic community, all of our efforts would be in vain. We also wish to thank Kate Ahr Parker, Publisher, for her encouragement and belief in us.

Thanks also to our many colleagues at our own institutions as well as throughout the country who patiently answered our questions and encouraged us on our quest. Finally, we owe a debt of gratitude to our families—our wives, Wendie Berg, Alison Unger, and Megan Williams, and our children, especially Timothy and Mark Gatto. Without their support, comfort, and understanding, this endeavor could never have been undertaken, let alone successfully completed.

BRIEF CONTENTS

Par	t I THE MOLECULAR DESIGN OF LIFE	Preface
1	Biochemistry: An Evolving Science 1	Part I THE MOLECULAR DESIGN OF LIFE
2	Protein Composition and Structure 27	
3	Exploring Proteins and Proteomes 65	CHAPTER 1 Biochemistry: An Evolving Science
4	DNA, RNA, and the Flow of Genetic Information 105	1.1 Biochemical Unity Underlies Biological Diversity
5	Exploring Genes and Genomes 135	1.2 DNA Illustrates the Interplay Between Form and
6	Exploring Evolution and Bioinformatics 169	Function
7	Hemoglobin: Portrait of a Protein in Action 191	DNA is constructed from four building blocks
8	Enzymes: Basic Concepts and Kinetics 215	Two single strands of DNA combine to form a double helix
9	Catalytic Strategies 251	DNA structure explains heredity and the storage of information
10	Regulatory Strategies 285	1.3 Concepts from Chemistry Explain the Properties
11	Carbohydrates 315	of Biological Molecules
12	Lipids and Cell Membranes 341	The formation of the DNA double helix as a key example
13	Membrane Channels and Pumps 367	The double helix can form from its component strands
14	Signal-Transduction Pathways 397	Covalent and noncovalent bonds are important for the structure and stability of biological molecules
_		The double helix is an expression of the rules of chemistry
Par	t II TRANSDUCING AND STORING ENERGY	The laws of thermodynamics govern the behavior of
15	Metabolism: Basic Concepts and Design 423	biochemical systems Heat is released in the formation of the double helix
16	Glycolysis and Gluconeogenesis 449	Acid–base reactions are central in many biochemical
17	The Citric Acid Cycle 495	processes
18	Oxidative Phosphorylation 523	Acid–base reactions can disrupt the double helix
19	The Light Reactions of Photosynthesis 565	Buffers regulate pH in organisms and in the laboratory
20	The Calvin Cycle and the Pentose Phosphate Pathway 589	1.4 The Genomic Revolution Is Transforming Biochemistry, Medicine, and Other Fields
21	Glycogen Metabolism 617	Genome sequencing has transformed biochemistry and other fields
22	Fatty Acid Metabolism 643	Environmental factors influence human biochemistry
23	Protein Turnover and Amino Acid Catabolism 681	Genome sequences encode proteins and patterns of expression
Par	t III SYNTHESIZING THE MOLECULES OF LIFE	APPENDIX: Visualizing Molecular Structures I:
24	The Biosynthesis of Amino Acids 713	Small Molecules
25	Nucleotide Biosynthesis 743	
26	The Biosynthesis of Membrane Lipids and Steroids 767	CHAPTER 2 Protein Composition and Structure
27	The Integration of Metabolism 801	2.1 Proteins Are Built from a Repertoire of 20 Amino
28	DNA Replication, Repair, and Recombination 827	Acids
29	RNA Synthesis and Processing 859	2.2 Primary Structure: Amino Acids Are Linked by
30	Protein Synthesis 893	Peptide Bonds to Form Polypeptide Chains
31	The Control of Gene Expression in Prokaryotes 925	Proteins have unique amino acid sequences specified
32	The Control of Gene Expression in Eukaryotes 941	by genes Polypeptide chains are flexible yet conformationally restricted
Par	t IV RESPONDING TO ENVIRONMENTAL CHANGES	2.3 Secondary Structure: Polypeptide Chains Can Fold into Regular Structures Such As the Alpha
33	Sensory Systems 961	Helix, the Beta Sheet, and Turns and Loops
34	The Immune System 981	The alpha helix is a coiled structure stabilized by intrachain
35	Molecular Motors 1011	hydrogen bonds Beta sheets are stabilized by hydrogen bonding between

polypeptide strands

36 Drug Development 1033

CONTENTS

v

2.4 Tertiary Structure: Water-Soluble ProteinsFold into Compact Structures with Nonpolar Cores42.5 Quaternary Structure: Polypeptide Chains CanAssemble into Multisubunit Structures42.6 The Amino Acid Sequence of a ProteinDetermines Its Three-Dimensional StructureAmino acids have different propensities forforming α helices, β sheets, and turnsSome rotein folding is a highly cooperative processProtein folding is a highly cooperative processProteins fold by progressive stabilization of intermediatesrather than by random searchSome proteins are inherently unstructure from sequenceremains a great challengeSome proteins are inherently unstructured and can existin multiple conformationsProtein misfolding and aggregation are associated withsome neurological diseasesProtein modification and cleavage confer new capabilities	Fibrous proteins provide structural support for cells	44 44
Assemble into Multisubunit Structures4 2.6 The Amino Acid Sequence of a ProteinDetermines Its Three-Dimensional StructureAmino acids have different propensities for forming α helices, β sheets, and turnsProtein folding is a highly cooperative processProteins fold by progressive stabilization of intermediates rather than by random searchPrediction of three-dimensional structure from sequence remains a great challengeSome proteins are inherently unstructured and can exist 	2.4 Tertiary Structure: Water-Soluble Proteins	46
Determines Its Three-Dimensional Structure4Amino acids have different propensities for forming α helices, β sheets, and turns5Protein folding is a highly cooperative process5Proteins fold by progressive stabilization of intermediates rather than by random search5Prediction of three-dimensional structure from sequence remains a great challenge5Some proteins are inherently unstructured and can exist in multiple conformations5Protein misfolding and aggregation are associated with some neurological diseases5Protein modification and cleavage confer new capabilities5		48
forming α helices, β sheets, and turns5Protein folding is a highly cooperative process5Proteins fold by progressive stabilization of intermediates rather than by random search5Prediction of three-dimensional structure from sequence remains a great challenge5Some proteins are inherently unstructured and can exist in multiple conformations5Protein misfolding and aggregation are associated with some neurological diseases5Protein modification and cleavage confer new capabilities5	Determines Its Three-Dimensional Structure	49
Protein folding is a highly cooperative process5Proteins fold by progressive stabilization of intermediates rather than by random search5Prediction of three-dimensional structure from sequence remains a great challenge5Some proteins are inherently unstructured and can exist in multiple conformations5Protein misfolding and aggregation are associated with some neurological diseases5Protein modification and cleavage confer new capabilities5	1 1	51
rather than by random search5Prediction of three-dimensional structure from sequenceremains a great challenge5Some proteins are inherently unstructured and can existin multiple conformations5Protein misfolding and aggregation are associated withsome neurological diseases5Protein modification and cleavage confer new capabilities5		52
remains a great challenge5Some proteins are inherently unstructured and can exist5in multiple conformations5Protein misfolding and aggregation are associated withsome neurological diseases5Protein modification and cleavage confer new capabilities5		53
in multiple conformations 5 Protein misfolding and aggregation are associated with some neurological diseases 5 Protein modification and cleavage confer new capabilities 5		54
some neurological diseases 5 Protein modification and cleavage confer new capabilities 5		55
	8 88 8	56
	Protein modification and cleavage confer new capabilities	57
APPENDIX: Visualizing Molecular Structures II: Proteins 6	APPENDIX: Visualizing Molecular Structures II: Proteins	61

CHAPTER 3 Exploring Proteins and Proteomes 65

The proteome is the functional representation of the genome	66
3.1 The Purification of Proteins Is an Essential	00
First Step in Understanding Their Function	66
The assay: How do we recognize the protein that we are looking for?	67
Proteins must be released from the cell to be purified	67
Proteins can be purified according to solubility, size, charge, and binding affinity	68
Proteins can be separated by gel electrophoresis and displayed	71
A protein purification scheme can be quantitatively evaluated	75
Ultracentrifugation is valuable for separating biomolecules and determining their masses	76
Protein purification can be made easier with the use of recombinant DNA technology	78
3.2 Immunology Provides Important Techniques with	70
Which to Investigate Proteins	79
Antibodies to specific proteins can be generated	79
Monoclonal antibodies with virtually any desired specificity can be readily prepared	80
Proteins can be detected and quantified by using an enzyme-linked immunosorbent assay	82
Western blotting permits the detection of proteins separated by gel electrophoresis	83
Fluorescent markers make the visualization of proteins in the cell possible	84

3.3 Mass Spectrometry Is a Powerful Technique	
for the Identification of Peptides and Proteins	85
Peptides can be sequenced by mass spectrometry	87
Proteins can be specifically cleaved into small peptides to facilitate analysis	88
Genomic and proteomic methods are complementary	89
The amino acid sequence of a protein provides valuable information	90
Individual proteins can be identified by mass spectrometry	91
3.4 Peptides Can Be Synthesized by Automated Solid-Phase Methods	92
3.5 Three-Dimensional Protein Structure Can Be Determined by X-ray Crystallography and NMR	
Spectroscopy	95
X-ray crystallography reveals three-dimensional structure in atomic detail	95
Nuclear magnetic resonance spectroscopy can reveal the structures of proteins in solution	97

CHAPTER 4 DNA, RNA, and the Flow of Genetic Information 105

4.1 A Nucleic Acid Consists of Four Kinds of Bases Linked to a Sugar–Phosphate Backbone RNA and DNA differ in the sugar component and	106
one of the bases	106
Nucleotides are the monomeric units of nucleic acids	107
DNA molecules are very long and have directionality	108
4.2 A Pair of Nucleic Acid Strands with Complementary Sequences Can Form a	
Double-Helical Structure	109
The double helix is stabilized by hydrogen bonds and van der Waals interactions	109
DNA can assume a variety of structural forms	111
Z-DNA is a left-handed double helix in which	111
backbone phosphates zigzag	112
Some DNA molecules are circular and supercoiled	113
Single-stranded nucleic acids can adopt elaborate	
structures	113
4.3 The Double Helix Facilitates the Accurate	
Transmission of Hereditary Information	114
Differences in DNA density established the validity	
of the semiconservative replication hypothesis	115
The double helix can be reversibly melted	116
4.4 DNA Is Replicated by Polymerases That Take	
Instructions from Templates	117
DNA polymerase catalyzes phosphodiester-	
bridge formation	117
The genes of some viruses are made of RNA	118
4.5 Gene Expression Is the Transformation	
of DNA Information into Functional Molecules	119
Several kinds of RNA play key roles in gene expression	119

All cellular RNA is synthesized by RNA polymerases	120
RNA polymerases take instructions from DNA templates	121
Transcription begins near promoter sites and ends at terminator sites	122
Transfer RNAs are the adaptor molecules in protein synthesis	123
4.6 Amino Acids Are Encoded by Groups of Three Bases Starting from a Fixed Point	124
Major features of the genetic code	125
Messenger RNA contains start and stop signals for	
protein synthesis	126
The genetic code is nearly universal	126
4.7 Most Eukaryotic Genes Are Mosaics of	
Introns and Exons	127
RNA processing generates mature RNA	127
Many exons encode protein domains	128
CHAPTER 5 Exploring Genes and Genomes	135
5.1 The Exploration of Genes Relies on Key Tools	
Restriction enzymes split DNA into specific fragments	137
Restriction fragments can be separated by gel electrophoresis and visualized	137
DNA can be sequenced by controlled termination of replication	138
DNA probes and genes can be synthesized by automated solid-phase methods	139
Selected DNA sequences can be greatly amplified by the polymerase chain reaction	141
PCR is a powerful technique in medical diagnostics, forensics, and studies of molecular evolution	142
The tools for recombinant DNA technology have been used to identify disease-causing mutations	143
5.2 Recombinant DNA Technology Has Revolutionized All Aspects of Biology	143
Restriction enzymes and DNA ligase are key tools in forming recombinant DNA molecules	143
Plasmids and λ phage are choice vectors for DNA	1 4 4
cloning in bacteria	144
Bacterial and yeast artificial chromosomes	147
Specific genes can be cloned from digests of genomic DNA	147
Complementary DNA prepared from mRNA can be expressed in host cells	149
Proteins with new functions can be created through directed changes in DNA	150

Recombinant methods enable the exploration of the functional effects of disease-causing mutations
5.3 Complete Genomes Have Been Sequenced and Analyzed

152

152

153 154

The genomes of organisms ranging from bacteria to
multicellular eukaryotes have been sequenced
The sequence of the human genome has been completed

Next-generation sequencing methods enable the rapid determination of a complete genome sequence	155
Comparative genomics has become a powerful research tool	156
5.4 Eukaryotic Genes Can Be Quantitated and Manipulated with Considerable Precision	157
Gene-expression levels can be comprehensively examined	157
New genes inserted into eukaryotic cells can be efficiently expressed	159
Transgenic animals harbor and express genes introduced into their germ lines	160
Gene disruption and genome editing provide clues to gene function and opportunities for new therapies	160
RNA interference provides an additional tool for disrupting gene expression	162
Tumor-inducing plasmids can be used to introduce new genes into plant cells	163
Human gene therapy holds great promise for medicine	164

CHAPTER 6 Exploring Evolution and Bioinformatics 169

6.1 Homologs Are Descended from a Common Ancestor	170
6.2 Statistical Analysis of Sequence Alignments Can Detect Homology	171
The statistical significance of alignments can be estimated by shuffling	173
Distant evolutionary relationships can be detected through the use of substitution matrices	174
Databases can be searched to identify homologous sequences	177
6.3 Examination of Three-Dimensional Structure Enhances Our Understanding of Evolutionary	
Relationships Tertiary structure is more conserved than primary	177
structure	178
Knowledge of three-dimensional structures can aid in the evaluation of sequence alignments	179
Repeated motifs can be detected by aligning sequences with themselves	180
Convergent evolution illustrates common solutions to biochemical challenges	181
Comparison of RNA sequences can be a source of insight into RNA secondary structures	182
6.4 Evolutionary Trees Can Be Constructed on the Basis of Sequence Information	183
Horizontal gene transfer events may explain unexpected branches of the evolutionary tree	184
6.5 Modern Techniques Make the Experimental Exploration of Evolution Possible	185
Ancient DNA can sometimes be amplified and sequenced	185
Molecular evolution can be examined experimentally	185

CHAPTER 7 Hemoglobin: Portrait of a Protein in Action 191

7.1 Myoglobin and Hemoglobin Bind Oxygen at Iron Atoms in Heme	192
Changes in heme electronic structure upon oxygen binding are the basis for functional imaging studies	193
The structure of myoglobin prevents the release of	193
reactive oxygen species Human hemoglobin is an assembly of four myoglobin-	194
like subunits	195
7.2 Hemoglobin Binds Oxygen Cooperatively Oxygen binding markedly changes the quaternary	195
structure of hemoglobin	197
Hemoglobin cooperativity can be potentially explained by several models	198
Structural changes at the heme groups are transmitted to the $\alpha_1\beta_1\alpha_2\beta_2$ interface	200
2,3-Bisphosphoglycerate in red cells is crucial in determining the oxygen affinity of hemoglobin	200
Carbon monoxide can disrupt oxygen transport by hemoglobin	201
7.3 Hydrogen lons and Carbon Dioxide Promote the Release of Oxygen: The Bohr Effect	202
7.4 Mutations in Genes Encoding Hemoglobin Subunits Can Result in Disease	204
Sickle-cell anemia results from the aggregation of mutated deoxyhemoglobin molecules	205
Thalassemia is caused by an imbalanced production of hemoglobin chains	207
The accumulation of free alpha-hemoglobin chains is prevented	207
Additional globins are encoded in the human genome	208
APPENDIX: Binding Models Can Be Formulated in Quantitative Terms: The Hill Plot and the	
Concerted Model	210
CHAPTER 8 Enzymes: Basic Concepts and	
Kinetics	215
8.1 Enzymes are Powerful and Highly Specific	
Catalysts	216
Many enzymes require cofactors for activity	217
Enzymes can transform energy from one form into another	217
8.2 Gibbs Free Energy Is a Useful Thermodynamic Function for Understanding Enzymes	218
The free-energy change provides information about the spontaneity but not the rate of a reaction	218
The standard free-energy change of a reaction is related to the equilibrium constant	219
Enzymes alter only the reaction rate and not the reaction	
equilibrium	220
8.3 Enzymes Accelerate Reactions by Facilitating the Formation of the Transition State	221

The formation of an enzyme–substrate complex is the first step in enzymatic catalysis	222
The active sites of enzymes have some common	002
features The binding energy between enzyme and substrate is	223
important for catalysis	225
8.4 The Michaelis–Menten Model Accounts for	005
the Kinetic Properties of Many Enzymes	225
Kinetics is the study of reaction rates	225
The steady-state assumption facilitates a description of enzyme kinetics	226
Variations in $K_{\rm M}$ can have physiological consequences	220
$K_{\rm M}$ and $V_{\rm max}$ values can be determined by several	440
means	228
$K_{ m M}$ and $V_{ m max}$ values are important enzyme	220
characteristics	229
$k_{\rm cat}/K_{\rm M}$ is a measure of catalytic efficiency	230
Most biochemical reactions include multiple substrates	231
Allosteric enzymes do not obey Michaelis–Menten kinetics	233
	233
8.5 Enzymes Can Be Inhibited by Specific Molecules	234
The different types of reversible inhibitors are	
kinetically distinguishable	235
Irreversible inhibitors can be used to map the active site	237
Penicillin irreversibly inactivates a key enzyme in bacterial cell-wall synthesis	239
Transition-state analogs are potent inhibitors of	
enzymes	240
Catalytic antibodies demonstrate the importance of selective binding of the transition state to enzymatic activity	241
8.6 Enzymes Can Be Studied One Molecule	
at a Time	242
APPENDIX: Enzymes are Classified on the Basis of the Types of Reactions That They Catalyze	245
CHAPTER 9 Catalytic Strategies	251
A few basic catalytic principles are used by	252
many enzymes	232
9.1 Proteases Facilitate a Fundamentally Difficult Reaction	253
Chymotrypsin possesses a highly reactive serine	
residue	253
Chymotrypsin action proceeds in two steps linked	
by a covalently bound intermediate	254
Serine is part of a catalytic triad that also includes	255
histidine and aspartate	255 258
Catalytic triads are found in other hydrolytic enzymes	258
The catalytic triad has been dissected by site-directed mutagenesis	260
Cysteine, aspartyl, and metalloproteases are other	200
major classes of peptide-cleaving enzymes	260
Protease inhibitors are important drugs	263
· .	

9.2 Carbonic Anhydrases Make a Fast	
Reaction Faster Carbonic anhydrase contains a bound zinc ion essential	264
for catalytic activity Catalysis entails zinc activation of a water molecule	265 265
A proton shuttle facilitates rapid regeneration of the	
active form of the enzyme	267
9.3 Restriction Enzymes Catalyze Highly Specific DNA-Cleavage Reactions	269
Cleavage is by in-line displacement of 3'-oxygen from phosphorus by magnesium-activated water	269
Restriction enzymes require magnesium for catalytic activity	271
The complete catalytic apparatus is assembled only	
within complexes of cognate DNA molecules, ensuring specificity	272
Host-cell DNA is protected by the addition of methyl	414
groups to specific bases	274
Type II restriction enzymes have a catalytic core in common and are probably related by horizontal	
gene transfer	275
9.4 Myosins Harness Changes in Enzyme	
Conformation to Couple ATP Hydrolysis to Mechanical Work	275
ATP hydrolysis proceeds by the attack of water on	
the gamma-phosphoryl group	276
Formation of the transition state for ATP hydrolysis is associated with a substantial conformational change	277
The altered conformation of myosin persists for a	211
substantial period of time	278
Scientists can watch single molecules of myosin move	279
Myosins are a family of enzymes containing P-loop structures	280
CHAPTER 10 Regulatory Strategies	285
10.1 Aspartate Transcarbamoylase Is Allosterically Inhibited by the End Product of Its Pathway	286
Allosterically regulated enzymes do not follow Michaelis–Menten kinetics	287
ATCase consists of separable catalytic and regulatory subunits	287
Allosteric interactions in ATCase are mediated by	
large changes in quaternary structure	288
Allosteric regulators modulate the T-to-R equilibrium	291
10.2 Isozymes Provide a Means of Regulation	
Specific to Distinct Tissues and Developmental	
Stages	292
10.3 Covalent Modification Is a Means of	
Regulating Enzyme Activity	293
Kinases and phosphatases control the extent of protein phosphorylation	294
Phosphorylation is a highly effective means of	207
regulating the activities of target proteins	296

Cyclic AMP activates protein kinase A by altering the quaternary structure	297
ATP and the target protein bind to a deep cleft in the catalytic subunit of protein kinase A	298
10.4 Many Enzymes Are Activated by Specific Proteolytic Cleavage	299
Chymotrypsinogen is activated by specific cleavage of a single peptide bond	299
Proteolytic activation of chymotrypsinogen leads to the formation of a substrate-binding site	300
The generation of trypsin from trypsinogen leads to the activation of other zymogens	301
Some proteolytic enzymes have specific inhibitors	302
Blood clotting is accomplished by a cascade of zymogen activations	303
Prothrombin requires a vitamin K-dependent modification for activation	304
Fibrinogen is converted by thrombin into a fibrin clot	304
Vitamin K is required for the formation of	
γ -carboxyglutamate	306
The clotting process must be precisely regulated	307
Hemophilia revealed an early step in clotting	308

CHAPTER 11 Carbohydrates

11.1 Monosaccharides Are the Simplest	
Carbohydrates	316
Many common sugars exist in cyclic forms	318
Pyranose and furanose rings can assume different	
conformations	320
Glucose is a reducing sugar	321
Monosaccharides are joined to alcohols and amines through glycosidic bonds	322
Phosphorylated sugars are key intermediates in energy generation and biosyntheses	322
11.2 Monosaccharides Are Linked to Form	
Complex Carbohydrates	323
Sucrose, lactose, and maltose are the common	
disaccharides	323
Glycogen and starch are storage forms of glucose	324
Cellulose, a structural component of plants, is made	
of chains of glucose	324
11.3 Carbohydrates Can Be Linked to Proteins	
to Form Glycoproteins	325
Carbohydrates can be linked to proteins through asparagine (N-linked) or through serine or threonine	
(O-linked) residues	326
The glycoprotein erythropoietin is a vital hormone	327
Glycosylation functions in nutrient sensing	327
Proteoglycans, composed of polysaccharides and	
protein, have important structural roles	327
Proteoglycans are important components of cartilage	328
Mucins are glycoprotein components of mucus	329
Protein glycosylation takes place in the lumen of the endoplasmic reticulum and in the Golgi complex	330
endoprasmic reticulum and in the Goigi complex	550

Specific enzymes are responsible for oligosaccharide assembly	331
Blood groups are based on protein glycosylation	
patterns Errors in glycosylation can result in pathological	331
conditions	332
Oligosaccharides can be "sequenced"	332
11.4 Lectins Are Specific Carbohydrate-Binding Proteins	333
Lectins promote interactions between cells	334
Lectins are organized into different classes	334
Influenza virus binds to sialic acid residues	335
CHAPTER 12 Lipids and Cell Membranes	341
Many common features underlie the diversity of biological membranes	342
12.1 Fatty Acids Are Key Constituents of Lipids	342
Fatty acid names are based on their parent	042
hydrocarbons	342
Fatty acids vary in chain length and degree of	242
unsaturation 12.2 There Are Three Common Types of	343
Membrane Lipids	344
Phospholipids are the major class of membrane lipids	344
Membrane lipids can include carbohydrate moieties	345
Cholesterol is a lipid based on a steroid nucleus	346
Archaeal membranes are built from ether lipids with branched chains	346
A membrane lipid is an amphipathic molecule containing a hydrophilic and a hydrophobic moiety	347
12.3 Phospholipids and Glycolipids Readily Form	
Bimolecular Sheets in Aqueous Media	348
Lipid vesicles can be formed from phospholipids Lipid bilayers are highly impermeable to ions and most	348
polar molecules	349
12.4 Proteins Carry Out Most Membrane	
Processes	350
Proteins associate with the lipid bilayer in a variety	251
of ways Proteins interact with membranes in a variety of ways	351 351
Some proteins associate with membranes through	551
covalently attached hydrophobic groups	354
Transmembrane helices can be accurately predicted from amino acid sequences	354
12.5 Lipids and Many Membrane Proteins Diffuse	
Rapidly in the Plane of the Membrane	356
The fluid mosaic model allows lateral movement but not rotation through the membrane	357
Membrane fluidity is controlled by fatty acid	
composition and cholesterol content	357
Lipid rafts are highly dynamic complexes formed between cholesterol and specific lipids	358
All biological membranes are asymmetric	358

12.6 Eukaryotic Cells Contain Compartments Bounded by Internal Membranes	359
CHAPTER 13 Membrane Channels and Pumps	367
The expression of transporters largely defines the metabolic activities of a given cell type	368
13.1 The Transport of Molecules Across a Membrane May Be Active or Passive	368
Many molecules require protein transporters to cross membranes	368
Free energy stored in concentration gradients can be quantified	369
13.2 Two Families of Membrane Proteins Use ATP Hydrolysis to Pump Ions and Molecules Across Membranes	370
P-type ATPases couple phosphorylation and conformational changes to pump calcium ions across membranes	370
Digitalis specifically inhibits the Na ⁺ –K ⁺ pump by blocking its dephosphorylation	373
P-type ATPases are evolutionarily conserved and play a wide range of roles	374
Multidrug resistance highlights a family of membrane pumps with ATP-binding cassette domains	374
13.3 Lactose Permease Is an Archetype of Secondary Transporters That Use One Concentration Gradient to Power the Formation of Another	376
13.4 Specific Channels Can Rapidly Transport Ions Across Membranes	378
Action potentials are mediated by transient changes in ${\rm Na}^+$ and ${\rm K}^+$ permeability	378
Patch-clamp conductance measurements reveal the activities of single channels	379
The structure of a potassium ion channel is an archetype for many ion-channel structures	379
The structure of the potassium ion channel reveals the basis of ion specificity	380
The structure of the potassium ion channel explains its rapid rate of transport	383
Voltage gating requires substantial conformational changes in specific ion-channel domains	383
A channel can be inactivated by occlusion of the pore: the ball-and-chain model	384
The acetylcholine receptor is an archetype for ligand-gated ion channels	385
Action potentials integrate the activities of several ion channels working in concert	387
Disruption of ion channels by mutations or chemicals can be potentially life-threatening	388
13.5 Gap Junctions Allow Ions and Small Molecules to Flow Between Communicating Cells	389
13.6 Specific Channels Increase the Permeability of Some Membranes to Water	390

CHAPTER 14 Signal-Transduction Pathways	397
Signal transduction depends on molecular circuits	398
14.1 Heterotrimeric G Proteins Transmit Signals and Reset Themselves	399
Ligand binding to 7TM receptors leads to the activation	
of heterotrimeric G proteins Activated G proteins transmit signals by binding to	400
other proteins	402
Cyclic AMP stimulates the phosphorylation of many target proteins by activating protein kinase A	403
G proteins spontaneously reset themselves through GTP hydrolysis	403
Some 7TM receptors activate the phosphoinositide cascade	404
Calcium ion is a widely used second messenger	405
Calcium ion often activates the regulatory protein calmodulin	407
14.2 Insulin Signaling: Phosphorylation Cascades	
Are Central to Many Signal-Transduction Processes	407
The insulin receptor is a dimer that closes around a bound insulin molecule	408
Insulin binding results in the cross-phosphorylation and activation of the insulin receptor	408
The activated insulin-receptor kinase initiates a kinase cascade	409
Insulin signaling is terminated by the action of phosphatases	411
14.3 EGF Signaling: Signal-Transduction Pathways	
Are Poised to Respond	411
EGF binding results in the dimerization of the EGF receptor	411
The EGF receptor undergoes phosphorylation of its	111
carboxyl-terminal tail	413
EGF signaling leads to the activation of Ras, a small G protein	413
Activated Ras initiates a protein kinase cascade	414
EGF signaling is terminated by protein phosphatases	111
and the intrinsic GTPase activity of Ras	414
14.4 Many Elements Recur with Variation in	
Different Signal-Transduction Pathways	415
14.5 Defects in Signal-Transduction Pathways	
Can Lead to Cancer and Other Diseases	416
Monoclonal antibodies can be used to inhibit signal- transduction pathways activated in tumors	416
Protein kinase inhibitors can be effective anticancer drugs	417
Cholera and whooping cough are the result of altered	117
G-protein activity	417
Part II TRANSDUCING AND STORING ENER	GY
CHAPTER 15 Metabolism: Basic Concepts	
and Design	423

15.1 Metabolism Is Composed of Many Coupled,	
Interconnecting Reactions	424
Metabolism consists of energy-yielding and energy-	
requiring reactions	424

A thermodynamically unfavorable reaction can be driven by a favorable reaction	425
	145
15.2 ATP Is the Universal Currency of Free Energy in Biological Systems	426
ATP hydrolysis is exergonic	426
ATP hydrolysis is exerginic ATP hydrolysis drives metabolism by shifting the	720
equilibrium of coupled reactions	427
The high phosphoryl potential of ATP results from	
structural differences between ATP and its hydrolysis	
products	429
Phosphoryl-transfer potential is an important form of	
cellular energy transformation	430
15.3 The Oxidation of Carbon Fuels Is an	
Important Source of Cellular Energy	432
Compounds with high phosphoryl-transfer potential	
can couple carbon oxidation to ATP synthesis	432
Ion gradients across membranes provide an important	
form of cellular energy that can be coupled to ATP synthesis	433
5	455
Phosphates play a prominent role in biochemical processes	434
Energy from foodstuffs is extracted in three stages	434
	101
15.4 Metabolic Pathways Contain Many	405
Recurring Motifs	435
Activated carriers exemplify the modular design and economy of metabolism	435
Many activated carriers are derived from vitamins	438
Key reactions are reiterated throughout metabolism	
Rey reactions are renerated throughout metabolism	
	440 442
Metabolic processes are regulated in three principal ways	440 442
Metabolic processes are regulated in three principal ways Aspects of metabolism may have evolved from an	442
Metabolic processes are regulated in three principal ways Aspects of metabolism may have evolved from an	442
Metabolic processes are regulated in three principal ways Aspects of metabolism may have evolved from an RNA world CHAPTER 16 Glycolysis and Gluconeogenesis	442 444
Metabolic processes are regulated in three principal ways Aspects of metabolism may have evolved from an RNA world CHAPTER 16 Glycolysis and Gluconeogenesis Glucose is generated from dietary carbohydrates	442 444 449
Metabolic processes are regulated in three principal ways Aspects of metabolism may have evolved from an RNA world CHAPTER 16 Glycolysis and Gluconeogenesis Glucose is generated from dietary carbohydrates Glucose is an important fuel for most organisms	442 444 449 450
Metabolic processes are regulated in three principal ways Aspects of metabolism may have evolved from an RNA world CHAPTER 16 Glycolysis and Gluconeogenesis Glucose is generated from dietary carbohydrates Glucose is an important fuel for most organisms 16.1 Glycolysis Is an Energy-Conversion Pathway	442 444 449 450 451
Metabolic processes are regulated in three principal ways Aspects of metabolism may have evolved from an RNA world CHAPTER 16 Glycolysis and Gluconeogenesis Glucose is generated from dietary carbohydrates Glucose is an important fuel for most organisms 16.1 Glycolysis Is an Energy-Conversion Pathway in Many Organisms	442 444 449 450
Metabolic processes are regulated in three principal ways Aspects of metabolism may have evolved from an RNA world CHAPTER 16 Glycolysis and Gluconeogenesis Glucose is generated from dietary carbohydrates Glucose is an important fuel for most organisms 16.1 Glycolysis Is an Energy-Conversion Pathway in Many Organisms Hexokinase traps glucose in the cell and begins	442 444 449 450 451
Metabolic processes are regulated in three principal ways Aspects of metabolism may have evolved from an RNA world CHAPTER 16 Glycolysis and Gluconeogenesis Glucose is generated from dietary carbohydrates Glucose is an important fuel for most organisms 16.1 Glycolysis Is an Energy-Conversion Pathway in Many Organisms Hexokinase traps glucose in the cell and begins glycolysis	442 444 449 450 451 451
Metabolic processes are regulated in three principal ways Aspects of metabolism may have evolved from an RNA world CHAPTER 16 Glycolysis and Gluconeogenesis Glucose is generated from dietary carbohydrates Glucose is an important fuel for most organisms 16.1 Glycolysis Is an Energy-Conversion Pathway in Many Organisms Hexokinase traps glucose in the cell and begins	442 444 449 450 451 451
Metabolic processes are regulated in three principal ways Aspects of metabolism may have evolved from an RNA world CHAPTER 16 Glycolysis and Gluconeogenesis Glucose is generated from dietary carbohydrates Glucose is an important fuel for most organisms 16.1 Glycolysis Is an Energy-Conversion Pathway in Many Organisms Hexokinase traps glucose in the cell and begins glycolysis Fructose 1,6-bisphosphate is generated from glucose	442 444 449 450 451 451 451
Metabolic processes are regulated in three principal ways Aspects of metabolism may have evolved from an RNA world CHAPTER 16 Glycolysis and Gluconeogenesis Glucose is generated from dietary carbohydrates Glucose is an important fuel for most organisms 16.1 Glycolysis Is an Energy-Conversion Pathway in Many Organisms Hexokinase traps glucose in the cell and begins glycolysis Fructose 1,6-bisphosphate is generated from glucose 6-phosphate	442 444 449 450 451 451 451
Metabolic processes are regulated in three principal ways Aspects of metabolism may have evolved from an RNA world CHAPTER 16 Glycolysis and Gluconeogenesis Glucose is generated from dietary carbohydrates Glucose is an important fuel for most organisms 16.1 Glycolysis Is an Energy-Conversion Pathway in Many Organisms Hexokinase traps glucose in the cell and begins glycolysis Fructose 1,6-bisphosphate is generated from glucose 6-phosphate The six-carbon sugar is cleaved into two three-carbon fragments Mechanism: Triose phosphate isomerase salvages a	442 444 449 450 451 451 451 453 454
Metabolic processes are regulated in three principal ways Aspects of metabolism may have evolved from an RNA world CHAPTER 16 Glycolysis and Gluconeogenesis Glucose is generated from dietary carbohydrates Glucose is an important fuel for most organisms 16.1 Glycolysis Is an Energy-Conversion Pathway in Many Organisms Hexokinase traps glucose in the cell and begins glycolysis Fructose 1,6-bisphosphate is generated from glucose 6-phosphate The six-carbon sugar is cleaved into two three-carbon fragments Mechanism: Triose phosphate isomerase salvages a three-carbon fragment	442 444 449 450 451 451 451 453
Metabolic processes are regulated in three principal ways Aspects of metabolism may have evolved from an RNA world CHAPTER 16 Glycolysis and Gluconeogenesis Glucose is generated from dietary carbohydrates Glucose is an important fuel for most organisms 16.1 Glycolysis Is an Energy-Conversion Pathway in Many Organisms Hexokinase traps glucose in the cell and begins glycolysis Fructose 1,6-bisphosphate is generated from glucose 6-phosphate The six-carbon sugar is cleaved into two three-carbon fragments Mechanism: Triose phosphate isomerase salvages a three-carbon fragment The oxidation of an aldehyde to an acid powers the	442 444 449 450 451 451 451 453 454
Metabolic processes are regulated in three principal ways Aspects of metabolism may have evolved from an RNA world CHAPTER 16 Glycolysis and Gluconeogenesis Glucose is generated from dietary carbohydrates Glucose is an important fuel for most organisms 16.1 Glycolysis Is an Energy-Conversion Pathway in Many Organisms Hexokinase traps glucose in the cell and begins glycolysis Fructose 1,6-bisphosphate is generated from glucose 6-phosphate The six-carbon sugar is cleaved into two three-carbon fragments Mechanism: Triose phosphate isomerase salvages a three-carbon fragment The oxidation of an aldehyde to an acid powers the formation of a compound with high phosphoryl-transfer	442 444 449 450 451 451 451 453 454 455
Metabolic processes are regulated in three principal ways Aspects of metabolism may have evolved from an RNA world CHAPTER 16 Glycolysis and Gluconeogenesis Glucose is generated from dietary carbohydrates Glucose is an important fuel for most organisms 16.1 Glycolysis Is an Energy-Conversion Pathway in Many Organisms Hexokinase traps glucose in the cell and begins glycolysis Fructose 1,6-bisphosphate is generated from glucose 6-phosphate The six-carbon sugar is cleaved into two three-carbon fragments Mechanism: Triose phosphate isomerase salvages a three-carbon fragment The oxidation of an aldehyde to an acid powers the formation of a compound with high phosphoryl-transfer potential	442 444 449 450 451 451 451 453 454
Metabolic processes are regulated in three principal ways Aspects of metabolism may have evolved from an RNA world CHAPTER 16 Glycolysis and Gluconeogenesis Glucose is generated from dietary carbohydrates Glucose is an important fuel for most organisms 16.1 Glycolysis Is an Energy-Conversion Pathway in Many Organisms Hexokinase traps glucose in the cell and begins glycolysis Fructose 1,6-bisphosphate is generated from glucose 6-phosphate The six-carbon sugar is cleaved into two three-carbon fragments Mechanism: Triose phosphate isomerase salvages a three-carbon fragment The oxidation of an aldehyde to an acid powers the formation of a compound with high phosphoryl-transfer potential Mechanism: Phosphorylation is coupled to the oxidation	442 444 449 450 451 451 451 453 454 455 457
 Metabolic processes are regulated in three principal ways Aspects of metabolism may have evolved from an RNA world CHAPTER 16 Glycolysis and Gluconeogenesis Glucose is generated from dietary carbohydrates Glucose is an important fuel for most organisms 16.1 Glycolysis Is an Energy-Conversion Pathway in Many Organisms Hexokinase traps glucose in the cell and begins glycolysis Fructose 1,6-bisphosphate is generated from glucose 6-phosphate The six-carbon sugar is cleaved into two three-carbon fragments Mechanism: Triose phosphate isomerase salvages a three-carbon fragment The oxidation of an aldehyde to an acid powers the formation of a compound with high phosphoryl-transfer potential Mechanism: Phosphorylation is coupled to the oxidation of glyceraldehyde 3-phosphate by a thioester intermediate 	442 444 449 450 451 451 451 453 454 455
Metabolic processes are regulated in three principal ways Aspects of metabolism may have evolved from an RNA world CHAPTER 16 Glycolysis and Gluconeogenesis Glucose is generated from dietary carbohydrates Glucose is an important fuel for most organisms 16.1 Glycolysis Is an Energy-Conversion Pathway in Many Organisms Hexokinase traps glucose in the cell and begins glycolysis Fructose 1,6-bisphosphate is generated from glucose 6-phosphate The six-carbon sugar is cleaved into two three-carbon fragments Mechanism: Triose phosphate isomerase salvages a three-carbon fragment The oxidation of an aldehyde to an acid powers the formation of a compound with high phosphoryl-transfer potential Mechanism: Phosphorylation is coupled to the oxidation	442 444 449 450 451 451 451 453 454 455 457
Metabolic processes are regulated in three principal ways Aspects of metabolism may have evolved from an RNA world CHAPTER 16 Glycolysis and Gluconeogenesis Glucose is generated from dietary carbohydrates Glucose is an important fuel for most organisms 16.1 Glycolysis Is an Energy-Conversion Pathway in Many Organisms Hexokinase traps glucose in the cell and begins glycolysis Fructose 1,6-bisphosphate is generated from glucose 6-phosphate The six-carbon sugar is cleaved into two three-carbon fragments Mechanism: Triose phosphate isomerase salvages a three-carbon fragment The oxidation of an aldehyde to an acid powers the formation of a compound with high phosphoryl-transfer potential Mechanism: Phosphorylation is coupled to the oxidation of glyceraldehyde 3-phosphate by a thioester intermediate ATP is formed by phosphoryl transfer from 1,3-bisphosphoglycerate	442 444 449 450 451 451 451 453 454 455 455 457 458
Metabolic processes are regulated in three principal ways Aspects of metabolism may have evolved from an RNA world CHAPTER 16 GlyColysis and Gluconeogenesis Glucose is generated from dietary carbohydrates Glucose is an important fuel for most organisms 16.1 GlyColysis Is an Energy-Conversion Pathway in Many Organisms Hexokinase traps glucose in the cell and begins glyColysis Fructose 1,6-bisphosphate is generated from glucose 6-phosphate The six-carbon sugar is cleaved into two three-carbon fragments Mechanism: Triose phosphate isomerase salvages a three-carbon fragment The oxidation of an aldehyde to an acid powers the formation of a compound with high phosphoryl-transfer potential Mechanism: Phosphorylation is coupled to the oxidation of glyceraldehyde 3-phosphate by a thioester intermediate ATP is formed by phosphoryl transfer from	442 444 449 450 451 451 451 453 454 455 455 457 458
Metabolic processes are regulated in three principal ways Aspects of metabolism may have evolved from an RNA world CHAPTER 16 Glycolysis and Gluconeogenesis Glucose is generated from dietary carbohydrates Glucose is an important fuel for most organisms 16.1 Glycolysis Is an Energy-Conversion Pathway in Many Organisms Hexokinase traps glucose in the cell and begins glycolysis Fructose 1,6-bisphosphate is generated from glucose 6-phosphate The six-carbon sugar is cleaved into two three-carbon fragments Mechanism: Triose phosphate isomerase salvages a three-carbon fragment The oxidation of an aldehyde to an acid powers the formation of a compound with high phosphoryl-transfer potential Mechanism: Phosphorylation is coupled to the oxidation of glyceraldehyde 3-phosphate by a thioester intermediate ATP is formed by phosphoryl transfer from 1,3-bisphosphoglycerate Additional ATP is generated with the formation of	442 444 449 450 451 451 451 453 454 455 455 457 458 459

NAD^+ is regenerated from the metabolism of pyruvate	462
Fermentations provide usable energy in the absence of	
oxygen	464
The binding site for NAD ⁺ is similar in many dehydrogenases	465
Fructose is converted into glycolytic intermediates by	105
fructokinase	465
Excessive fructose consumption can lead to pathological conditions	466
Galactose is converted into glucose 6-phosphate	466
Many adults are intolerant of milk because they are	100
deficient in lactase	467
Galactose is highly toxic if the transferase is missing	468
16.2 The Glycolytic Pathway Is Tightly Controlled	469
Glycolysis in muscle is regulated to meet the need for ATP	469
The regulation of glycolysis in the liver illustrates the	409
biochemical versatility of the liver	472
A family of transporters enables glucose to enter and	
leave animal cells	473
Aerobic glycolysis is a property of rapidly growing cells	474
Cancer and endurance training affect glycolysis in a similar fashion	476
	470
16.3 Glucose Can Be Synthesized from Noncarbohydrate Precursors	476
Gluconeogenesis is not a reversal of glycolysis	478
The conversion of pyruvate into phosphoenolpyruvate	170
begins with the formation of oxaloacetate	478
Oxaloacetate is shuttled into the cytoplasm and	
converted into phosphoenolpyruvate	480
The conversion of fructose 1,6-bisphosphate into fructose 6-phosphate and orthophosphate is an	
irreversible step	480
The generation of free glucose is an important	
control point	481
Six high-transfer-potential phosphoryl groups are spent in synthesizing glucose from pyruvate	481
16.4 Gluconeogenesis and Glycolysis Are	
Reciprocally Regulated	482
Energy charge determines whether glycolysis or	
gluconeogenesis will be most active	482
The balance between glycolysis and gluconeogenesis	
in the liver is sensitive to blood-glucose concentration	483
Substrate cycles amplify metabolic signals and produce heat	485
Lactate and alanine formed by contracting muscle	
are used by other organs	485
Glycolysis and gluconeogenesis are evolutionarily intertwined	487
CHAPTER 17 The Citric Acid Cycle	495
The citric acid cycle harvests high-energy electrons	496
17.1 The Pyruvate Dehydrogenase Complex Links	
Glycolysis to the Citric Acid Cycle	497
Mechanism: The synthesis of acetyl coenzyme A from	
pyruvate requires three enzymes and five coenzymes	498

wiechamsin. 1	ne synthesis of	acetyr coenzyr	ne / mom
pyruvate requi	res three enzyr	nes and five co	enzymes

Flexible linkages allow lipoamide to move between different active sites	500
17.2 The Citric Acid Cycle Oxidizes	500
Two-Carbon Units	501
Citrate synthase forms citrate from oxaloacetate and acetyl coenzyme A	502
Mechanism: The mechanism of citrate synthase prevents undesirable reactions	502
Citrate is isomerized into isocitrate	502 504
Isocitrate is oxidized and decarboxylated to alpha-	001
ketoglutarate	504
Succinyl coenzyme A is formed by the oxidative decarboxylation of alpha-ketoglutarate	505
A compound with high phosphoryl-transfer potential is generated from succinyl coenzyme A	505
Mechanism: Succinyl coenzyme A synthetase transforms	
types of biochemical energy	506
Oxaloacetate is regenerated by the oxidation of succinate	507
The citric acid cycle produces high-transfer-potential electrons, ATP, and CO_2	508
-	500
17.3 Entry to the Citric Acid Cycle and Metabolism Through It Are Controlled	510
The pyruvate dehydrogenase complex is regulated	010
allosterically and by reversible phosphorylation	511
The citric acid cycle is controlled at several points	512
Defects in the citric acid cycle contribute to the	F12
development of cancer	513
17.4 The Citric Acid Cycle Is a Source of Biosynthetic Precursors	514
The citric acid cycle must be capable of being rapidly	
replenished	514
The disruption of pyruvate metabolism is the cause of beriberi and poisoning by mercury and arsenic	515
The citric acid cycle may have evolved from preexisting	
pathways	516
17.5 The Glyoxylate Cycle Enables Plants and	
Bacteria to Grow on Acetate	516
CHAPTER 18 Oxidative Phosphorylation	523
18.1 Eukaryotic Oxidative Phosphorylation Takes	
Place in Mitochondria	524
Mitochondria are bounded by a double membrane	524
Mitochondria are the result of an endosymbiotic event	525
18.2 Oxidative Phosphorylation Depends on Electron Transfer	526
The electron-transfer potential of an electron is	
measured as redox potential	526
A 1.14-volt potential difference between NADH and	
molecular oxygen drives electron transport through the chain and favors the formation of a proton gradient	528
18.3 The Respiratory Chain Consists of Four	240
Complexes: Three Proton Pumps and a Physical	
Link to the Citric Acid Cycle	529
Iron–sulfur clusters are common components of	504
the electron transport chain	531

The high-potential electrons of NADH enter the respiratory chain at NADH-Q oxidoreductase	532
Ubiquinol is the entry point for electrons from FADH ₂ of flavoproteins	533
Electrons flow from ubiquinol to cytochrome <i>c</i> through Q-cytochrome <i>c</i> oxidoreductase	533
The Q cycle funnels electrons from a two-electron carrier to a one-electron carrier and pumps protons	535
Cytochrome <i>c</i> oxidase catalyzes the reduction of molecular oxygen to water	535
Toxic derivatives of molecular oxygen such as superoxide radicals are scavenged by protective enzymes	538
Electrons can be transferred between groups that are not in contact	540
The conformation of cytochrome <i>c</i> has remained essentially constant for more than a billion years	541
18.4 A Proton Gradient Powers the Synthesis of ATP	541
ATP synthase is composed of a proton-conducting unit and a catalytic unit	543
Proton flow through ATP synthase leads to the release of tightly bound ATP: The binding-change mechanism	544
Rotational catalysis is the world's smallest molecular motor	546
Proton flow around the \mathbf{c} ring powers ATP synthesis	546
ATP synthase and G proteins have several common features	548
18.5 Many Shuttles Allow Movement Across Mitochondrial Membranes	549
Electrons from cytoplasmic NADH enter mitochondria by shuttles	549
The entry of ADP into mitochondria is coupled to the exit of ATP by ATP-ADP translocase	550
Mitochondrial transporters for metabolites have a common tripartite structure	551
18.6 The Regulation of Cellular Respiration Is Governed Primarily by the Need for ATP	552
The complete oxidation of glucose yields about 30 molecules of ATP	552
The rate of oxidative phosphorylation is determined	002
by the need for ATP	553
ATP synthase can be regulated Regulated uncoupling leads to the generation of heat	554 554
Oxidative phosphorylation can be inhibited at many stages	556
Mitochondrial diseases are being discovered	557
Mitochondria play a key role in apoptosis	557
Power transmission by proton gradients is a central motif of bioenergetics	558
CHAPTER 19 The Light Reactions of	
Photosynthesis	565
Photosynthesis converts light energy into chemical energy	566
19.1 Photosynthesis Takes Place in Chloroplasts	567
The primary events of photosynthesis take place in	
thylakoid membranes	567

Chloroplasts arose from an endosymbiotic event	568
19.2 Light Absorption by Chlorophyll Induces	
Electron Transfer	568
A special pair of chlorophylls initiate charge separation	569
Cyclic electron flow reduces the cytochrome of the	
reaction center	572
19.3 Two Photosystems Generate a Proton Gradient	
and NADPH in Oxygenic Photosynthesis	572
Photosystem II transfers electrons from water to	
plastoquinone and generates a proton gradient	572
Cytochrome bf links photosystem II to photosystem I	575
Photosystem I uses light energy to generate reduced	
ferredoxin, a powerful reductant	575
Ferredoxin–NADP ⁺ reductase converts NADP ⁺ into	
NADPH	576
19.4 A Proton Gradient across the Thylakoid	
Membrane Drives ATP Synthesis	578
The ATP synthase of chloroplasts closely resembles	
those of mitochondria and prokaryotes	578
The activity of chloroplast ATP synthase is regulated	579
Cyclic electron flow through photosystem I leads to the	500
production of ATP instead of NADPH	580
The absorption of eight photons yields one O_2 , two	581
NADPH, and three ATP molecules	581
19.5 Accessory Pigments Funnel Energy into	504
Reaction Centers	581
Resonance energy transfer allows energy to move from	500
the site of initial absorbance to the reaction center	582
The components of photosynthesis are highly organized	583
Many herbicides inhibit the light reactions of	504
photosynthesis	584
19.6 The Ability to Convert Light into Chemical	
Energy Is Ancient	584
Artificial photosynthetic systems may provide clean,	
renewable energy	585
CHAPTER 20 The Calvin Cycle and the	
Pentose Phosphate Pathway	589
20.1 The Calvin Cycle Synthesizes Hexoses	
from Carbon Dioxide and Water	590
Carbon dioxide reacts with ribulose 1,5-bisphosphate	504
to form two molecules of 3-phosphoglycerate	591
Rubisco activity depends on magnesium and carbamate	592
Rubisco activase is essential for rubisco activity	593
Rubisco also catalyzes a wasteful oxygenase reaction:	50.2
Catalytic imperfection	593
Hexose phosphates are made from phosphoglycerate,	504
and ribulose 1,5-bisphosphate is regenerated	594
Three ATP and two NADPH molecules are used to bring carbon dioxide to the level of a hexose	597
Starch and sucrose are the major carbohydrate stores	571
in plants	597
20.2 The Activity of the Calvin Cycle Depends on	2.1
Environmental Conditions	598
	000

Rubisco is activated by light-driven changes in proton and magnesium ion concentrations	598	Muscle phosp energy charge
Thioredoxin plays a key role in regulating the Calvin cycle	599	Biochemical of Phosphorylat
The C ₄ pathway of tropical plants accelerates photosynthesis by concentrating carbon dioxide	599	phosphorylas Phosphorylas
Crassulacean acid metabolism permits growth in arid ecosystems	601	and calcium
20.3 The Pentose Phosphate Pathway Generates NADPH and Synthesizes Five-Carbon Sugars	601	21.3 Epinephr for Glycogen E
Two molecules of NADPH are generated in the conversion of glucose 6-phosphate into ribulose 5-phosphate	602	G proteins tra glycogen brea Glycogen brea
The pentose phosphate pathway and glycolysis are linked by transketolase and transaldolase	602	necessary The regulatic sophisticated
Mechanism: Transketolase and transaldolase stabilize carbanionic intermediates by different mechanisms	605	21.4 Glycoger
20.4 The Metabolism of Glucose 6-Phosphate by he Pentose Phosphate Pathway Is Coordinated		Different Pathy UDP-glucose
with Glycolysis The rate of the pentose phosphate pathway is controlled	607	Glycogen syr from UDP-g
by the level of NADP ⁺ The flow of glucose 6-phosphate depends on the need	607	A branching Glycogen syr
for NADPH, ribose 5-phosphate, and ATP The pentose phosphate pathway is required for rapid	608	glycogen syn Glycogen is a
cell growth Through the looking-glass: The Calvin cycle and the	610	21.5 Glycoger Reciprocally R
pentose phosphate pathway are mirror images	610	Protein phos of kinases on
20.5 Glucose 6-Phosphate Dehydrogenase Plays a Key Role in Protection Against Reactive Oxygen Species	610	Insulin stimu glycogen syn
Glucose 6-phosphate dehydrogenase deficiency causes a drug-induced hemolytic anemia	610	Glycogen me blood-glucos A biochemica
A deficiency of glucose 6-phosphate dehydrogenase confers an evolutionary advantage in some circumstances	612	diseases is po
CHAPTER 21 Glycogen Metabolism	617	CHAPTER 22
Glycogen metabolism is the regulated release and storage of glucose	618	Fatty acid de in their chem
21.1 Glycogen Breakdown Requires the Interplay of Several Enzymes	619	22.1 Triacylgly Energy Stores
Phosphorylase catalyzes the phosphorolytic cleavage of glycogen to release glucose 1-phosphate	619	Dietary lipids Dietary lipids
Mechanism: Pyridoxal phosphate participates in the phosphorolytic cleavage of glycogen	620	22.2 The Use Three Stages
A debranching enzyme also is needed for the breakdown of glycogen	621	Triacylglycer stimulated lip
Phosphoglucomutase converts glucose 1-phosphate into glucose 6-phosphate	(22	Free fatty aci into the blood
	622	into the blood
The liver contains glucose 6-phosphatase, a hydrolytic enzyme absent from muscle	622	
enzyme absent from muscle 21.2 Phosphorylase Is Regulated by Allosteric Interactions and Reversible Phosphorylation		Fatty acids ar oxidized Carnitine car mitochondria
	622	Fatty acids a oxidized Carnitine car

Muscle phosphorylase is regulated by the intracellular energy charge	625
Biochemical characteristics of muscle fiber types differ	625
Phosphorylation promotes the conversion of	
phosphorylase b to phosphorylase a	626
Phosphorylase kinase is activated by phosphorylation and calcium ions	626
21.3 Epinephrine and Glucagon Signal the Need for Glycogen Breakdown	627
G proteins transmit the signal for the initiation of glycogen breakdown	627
Glycogen breakdown must be rapidly turned off when necessary	629
The regulation of glycogen phosphorylase became more sophisticated as the enzyme evolved	629
21.4 Glycogen Is Synthesized and Degraded by Different Pathways	630
UDP-glucose is an activated form of glucose	630
Glycogen synthase catalyzes the transfer of glucose from UDP-glucose to a growing chain	630
A branching enzyme forms α -1,6 linkages	631
Glycogen synthase is the key regulatory enzyme in glycogen synthesis	632
Glycogen is an efficient storage form of glucose	632
21.5 Glycogen Breakdown and Synthesis Are	
Reciprocally Regulated	632
Protein phosphatase 1 reverses the regulatory effects of kinases on glycogen metabolism	633
Insulin stimulates glycogen synthesis by inactivating glycogen synthase kinase	635
Glycogen metabolism in the liver regulates the blood-glucose level	635
A biochemical understanding of glycogen-storage diseases is possible	637
CHAPTER 22 Fatty Acid Metabolism	643
Fatty acid degradation and synthesis mirror each other in their chemical reactions	644
22.1 Triacylglycerols Are Highly Concentrated Energy Stores	645
Dietary lipids are digested by pancreatic lipases	645
Dietary lipids are transported in chylomicrons	646
22.2 The Use of Fatty Acids as Fuel Requires Three Stages of Processing	647
Triacylglycerols are hydrolyzed by hormone- stimulated lipases	647
Free fatty acids and glycerol are released	
into the blood	648
into the blood Fatty acids are linked to coenzyme A before they are oxidized	648 648
Fatty acids are linked to coenzyme A before they are	

The complete oxidation of palmitate yields	
106 molecules of ATP	652
22.3 Unsaturated and Odd-Chain Fatty Acids Require Additional Steps for Degradation	652
An isomerase and a reductase are required for the oxidation of unsaturated fatty acids	652
Odd-chain fatty acids yield propionyl CoA in the final thiolysis step	654
Vitamin B_{12} contains a corrin ring and a cobalt atom	654
Mechanism: Methylmalonyl CoA mutase catalyzes a rearrangement to form succinyl CoA	655
Fatty acids are also oxidized in peroxisomes	656
Ketone bodies are formed from acetyl CoA when fat breakdown predominates	657
Ketone bodies are a major fuel in some tissues	658
Animals cannot convert fatty acids into glucose	660
Some fatty acids may contribute to the development of pathological conditions	661
22.4 Fatty Acids Are Synthesized by Fatty Acid Synthase	661
Fatty acids are synthesized and degraded by different	001
pathways	661
The formation of malonyl CoA is the committed step in fatty acid synthesis	662
Intermediates in fatty acid synthesis are attached to an acyl carrier protein	662
Fatty acid synthesis consists of a series of condensation, reduction, dehydration, and reduction reactions	662
Fatty acids are synthesized by a multifunctional enzyme complex in animals The synthesis of palmitate requires 8 molecules of acetyl	664
CoA, 14 molecules of NADPH, and 7 molecules of ATP Citrate carries acetyl groups from mitochondria to the	666
cytoplasm for fatty acid synthesis	666
Several sources supply NADPH for fatty acid synthesis	667
Fatty acid metabolism is altered in tumor cells	667
22.5 The Elongation and Unsaturation of Fatty Acids are Accomplished by Accessory Enzyme Systems	668
Membrane-bound enzymes generate unsaturated fatty acids	668
Eicosanoid hormones are derived from polyunsaturated	
fatty acids Variations on a thomas Palekatida and nonribosomal	669
Variations on a theme: Polyketide and nonribosomal peptide synthetases resemble fatty acid synthase	670
22.6 Acetyl CoA Carboxylase Plays a Key Role in Controlling Fatty Acid Metabolism	670
Acetyl CoA carboxylase is regulated by conditions in the cell	671
Acetyl CoA carboxylase is regulated by a variety of hormones	671
CHAPTER 23 Protein Turnover and	
Amino Acid Catabolism	681
23.1 Proteins are Degraded to Amino Acids	682
The digestion of dietary proteins begins in the stomach and is completed in the intestine	682
Cellular proteins are degraded at different rates	682

23.2 Protein Turnover Is Tightly Regulated	683
Ubiquitin tags proteins for destruction	683
The proteasome digests the ubiquitin-tagged proteins The ubiquitin pathway and the proteasome have	685
prokaryotic counterparts	686
Protein degradation can be used to regulate biological function	687
23.3 The First Step in Amino Acid Degradation Is the Removal of Nitrogen	687
Alpha-amino groups are converted into ammonium ions by the oxidative deamination of glutamate	687
Mechanism: Pyridoxal phosphate forms Schiff-base intermediates in aminotransferases	689
Aspartate aminotransferase is an archetypal pyridoxal- dependent transaminase	690
Blood levels of aminotransferases serve a diagnostic function	691
Pyridoxal phosphate enzymes catalyze a wide array of reactions	691
Serine and threonine can be directly deaminated	692
Peripheral tissues transport nitrogen to the liver	692
23.4 Ammonium Ion Is Converted into Urea in Most Terrestrial Vertebrates	693
The urea cycle begins with the formation of carbamoyl phosphate	693
Carbamoyl phosphate synthetase is the key regulatory enzyme for urea synthesis	694
Carbamoyl phosphate reacts with ornithine to begin the urea cycle	694
The urea cycle is linked to gluconeogenesis	696
Urea-cycle enzymes are evolutionarily related to	
enzymes in other metabolic pathways	696
Inherited defects of the urea cycle cause hyperammonemia and can lead to brain damage	697
Urea is not the only means of disposing of excess nitrogen	698
23.5 Carbon Atoms of Degraded Amino Acids	
Emerge as Major Metabolic Intermediates	698
Pyruvate is an entry point into metabolism for a number of amino acids	699
Oxaloacetate is an entry point into metabolism for	
aspartate and asparagine Alpha-ketoglutarate is an entry point into metabolism	700
for five-carbon amino acids	700
Succinyl coenzyme A is a point of entry for several nonpolar amino acids	701
Methionine degradation requires the formation of a key methyl donor, S-adenosylmethionine The branched-chain amino acids yield acetyl CoA,	701
acetoacetate, or propionyl CoA Oxygenases are required for the degradation of	701
aromatic amino acids	703
23.6 Inborn Errors of Metabolism Can Disrupt Amino Acid Degradation	705
Phenylketonuria is one of the most common metabolic disorders	706
Determining the basis of the neurological symptoms of phenylketonuria is an active area of research	706

Part III SYNTHESIZING THE MOLECULES OF LIFE

CHAPTER 24 The Biosynthesis of Amino Acids 713

Amino acid synthesis requires solutions to three key biochemical problems	714
24.1 Nitrogen Fixation: Microorganisms Use ATP	
and a Powerful Reductant to Reduce Atmospheric	
Nitrogen to Ammonia	714
The iron–molybdenum cofactor of nitrogenase binds and reduces atmospheric nitrogen	715
Ammonium ion is assimilated into an amino acid through glutamate and glutamine	717
24.2 Amino Acids Are Made from Intermediates of the Citric Acid Cycle and Other Major Pathways	719
Human beings can synthesize some amino acids but must obtain others from their diet	719
Aspartate, alanine, and glutamate are formed by the addition of an amino group to an alpha-ketoacid	720
A common step determines the chirality of all amino acids	721
The formation of asparagine from aspartate requires an	721
adenylated intermediate	721
Glutamate is the precursor of glutamine, proline, and arginine	722
3-Phosphoglycerate is the precursor of serine, cysteine, and glycine	722
Tetrahydrofolate carries activated one-carbon units at several oxidation levels	723
S-Adenosylmethionine is the major donor of methyl groups	724
Cysteine is synthesized from serine and homocysteine	724
High homocysteine levels correlate with vascular disease	726
Shikimate and chorismate are intermediates in the	, 20
biosynthesis of aromatic amino acids	727
Tryptophan synthase illustrates substrate channeling in enzymatic catalysis	729
24.3 Feedback Inhibition Regulates Amino Acid	
Biosynthesis	730
Branched pathways require sophisticated regulation	731
The sensitivity of glutamine synthetase to allosteric regulation is altered by covalent modification	732
24.4 Amino Acids Are Precursors of Many	
Biomolecules	734
Glutathione, a gamma-glutamyl peptide, serves as a sulfhydryl buffer and an antioxidant	734
Nitric oxide, a short-lived signal molecule, is formed from arginine	735
Porphyrins are synthesized from glycine and succinyl coenzyme A	736
Porphyrins accumulate in some inherited disorders of porphyrin metabolism	737
CHAPTER 25 Nucleotide Biosynthesis	743
Nucleotides can be synthesized by de novo or	

salvage pathways

25.1 The Pyrimidine Ring Is Assembled de Novo	744
or Recovered by Salvage Pathways Bicarbonate and other oxygenated carbon compounds	744
are activated by phosphorylation The side chain of glutamine can be hydrolyzed to	745
generate ammonia	745
Intermediates can move between active sites by channeling	745
Orotate acquires a ribose ring from PRPP to form a pyrimidine nucleotide and is converted into uridylate	746
Nucleotide mono-, di-, and triphosphates are interconvertible	747
CTP is formed by amination of UTP	747
Salvage pathways recycle pyrimidine bases	748
25.2 Purine Bases Can Be Synthesized de Novo or Recycled by Salvage Pathways	748
The purine ring system is assembled on ribose	
phosphate The purine ring is assembled by successive steps of activation by phosphorylation followed by	749
displacement	749
AMP and GMP are formed from IMP	751
Enzymes of the purine synthesis pathway associate with one another in vivo	752
Salvage pathways economize intracellular energy expenditure	752
25.3 Deoxyribonucleotides Are Synthesized by the Reduction of Ribonucleotides Through a Radical Mechanism	753
Mechanism: A tyrosyl radical is critical to the action of ribonucleotide reductase	753
Stable radicals other than tyrosyl radical are employed by other ribonucleotide reductases	755
Thymidylate is formed by the methylation of deoxyuridylate	755
Dihydrofolate reductase catalyzes the regeneration of tetrahydrofolate, a one-carbon carrier	756
Several valuable anticancer drugs block the synthesis of thymidylate	757
25.4 Key Steps in Nucleotide Biosynthesis Are Regulated by Feedback Inhibition	758
Pyrimidine biosynthesis is regulated by aspartate transcarbamoylase	758
The synthesis of purine nucleotides is controlled by feedback inhibition at several sites	758
The synthesis of deoxyribonucleotides is controlled by the regulation of ribonucleotide reductase	759
25.5 Disruptions in Nucleotide Metabolism Can Cause Pathological Conditions	760
The loss of adenosine deaminase activity results in severe combined immunodeficiency	760
Gout is induced by high serum levels of urate	760
Lesch–Nyhan syndrome is a dramatic consequence of mutations in a salvage-pathway enzyme	761
Folic acid deficiency promotes birth defects such as	, 01
spina bifida	762

CHAPTER 26 The Biosynthesis of Membrane Lipids and Steroids	767
26.1 Phosphatidate Is a Common Intermediate in the Synthesis of Phospholipids and	
Triacylglycerols	768
The synthesis of phospholipids requires an activated	
intermediate	769
Some phospholipids are synthesized from an activated	770
alcohol Phosphatidylcholine is an abundant phospholipid	770 770
Excess choline is implicated in the development of	770
heart disease	771
Base-exchange reactions can generate phospholipids	771
Sphingolipids are synthesized from ceramide	772
Gangliosides are carbohydrate-rich sphingolipids that	
contain acidic sugars	772
Sphingolipids confer diversity on lipid structure and function	773
Respiratory distress syndrome and Tay–Sachs disease	115
result from the disruption of lipid metabolism	774
Ceramide metabolism stimulates tumor growth	774
Phosphatidic acid phosphatase is a key regulatory	
enzyme in lipid metabolism	775
26.2 Cholesterol Is Synthesized from Acetyl	
Coenzyme A in Three Stages	776
The synthesis of mevalonate, which is activated as	
isopentenyl pyrophosphate, initiates the synthesis of cholesterol	776
Squalene (C_{30}) is synthesized from six molecules of	//0
isopentenyl pyrophosphate (C_5)	777
Squalene cyclizes to form cholesterol	778
26.3 The Complex Regulation of Cholesterol	
Biosynthesis Takes Place at Several Levels	779
Lipoproteins transport cholesterol and triacylglycerols	
throughout the organism	782
Low-density lipoproteins play a central role in	
cholesterol metabolism	784
The absence of the LDL receptor leads to hypercholesterolemia and atherosclerosis	784
Mutations in the LDL receptor prevent LDL release	704
and result in receptor destruction	785
Cycling of the LDL receptor is regulated	787
HDL appears to protect against atherosclerosis	787
The clinical management of cholesterol levels can be	
understood at a biochemical level	788
26.4 Important Derivatives of Cholesterol Include	
Bile Salts and Steroid Hormones	788
Letters identify the steroid rings and numbers identify	700
the carbon atoms	790
Steroids are hydroxylated by cytochrome P450 monooxygenases that use NADPH and O_2	790
The cytochrome P450 system is widespread and	
performs a protective function	791
Pregnenolone, a precursor of many other steroids,	
is formed from cholesterol by cleavage of its side chain	792

Progesterone and corticosteroids are synthesized from pregnenolone	792
Androgens and estrogens are synthesized from pregnenolone	792
Vitamin D is derived from cholesterol by the ring- splitting activity of light	794
CHAPTER 27 The Integration of Metabolism	801
27.1 Caloric Homeostasis Is a Means of Regulating Body Weight	802
27.2 The Brain Plays a Key Role in Caloric Homeostasis	804
Signals from the gastrointestinal tract induce feelings of satiety	804
Leptin and insulin regulate long-term control over caloric homeostasis	805
Leptin is one of several hormones secreted by adipose tissue	806
Leptin resistance may be a contributing factor to obesity	806
Dieting is used to combat obesity	807
27.3 Diabetes Is a Common Metabolic Disease Often Resulting from Obesity	807
Insulin initiates a complex signal-transduction	000
pathway in muscle Metabolic syndrome often precedes type 2 diabetes	808 809
Excess fatty acids in muscle modify metabolism	810
Insulin resistance in muscle facilitates pancreatic failure	810
Metabolic derangements in type 1 diabetes result from insulin insufficiency and glucagon excess	812
27.4 Exercise Beneficially Alters the Biochemistry of Cells	813
Mitochondrial biogenesis is stimulated by muscular activity	813
Fuel choice during exercise is determined by the intensity and duration of activity	813
27.5 Food Intake and Starvation Induce Metabolic Changes	816
The starved–fed cycle is the physiological response	
to a fast	816
Metabolic adaptations in prolonged starvation minimize protein degradation	818
27.6 Ethanol Alters Energy Metabolism in the	010
Liver Ethanol metabolism leads to an excess of NADH	819 820
Excess ethanol consumption disrupts vitamin	820
metabolism	821
CHAPTER 28 DNA Replication, Repair,	
and Recombination	827
28.1 DNA Replication Proceeds by the Polymerization of Deoxyribonucleoside	
Triphosphates Along a Template	828

DNA polymerases require a template and a primer All DNA polymerases have structural features in	829
common	829
Two bound metal ions participate in the polymerase reaction	829
The specificity of replication is dictated by complementarity of shape between bases	830
An RNA primer synthesized by primase enables DNA synthesis to begin	831
One strand of DNA is made continuously, whereas the other strand is synthesized in fragments	831
DNA ligase joins ends of DNA in duplex regions	832
The separation of DNA strands requires specific helicases and ATP hydrolysis	832
28.2 DNA Unwinding and Supercoiling Are Controlled by Topoisomerases	833
The linking number of DNA, a topological property, determines the degree of supercoiling	835
Topoisomerases prepare the double helix for	
unwinding	836
Type I topoisomerases relax supercoiled structures	836
Type II topoisomerases can introduce negative supercoils through coupling to ATP hydrolysis	837
28.3 DNA Replication Is Highly Coordinated	839
DNA replication requires highly processive polymerases	839
The leading and lagging strands are synthesized in a coordinated fashion	840
DNA replication in <i>Escherichia coli</i> begins at a unique site	842
DNA synthesis in eukaryotes is initiated at multiple sites	843
Telomeres are unique structures at the ends of linear chromosomes	844
Telomeres are replicated by telomerase, a specialized polymerase that carries its own RNA template	845
28.4 Many Types of DNA Damage Can Be	
Repaired	845
Errors can arise in DNA replication	846
Bases can be damaged by oxidizing agents, alkylating agents, and light	846
DNA damage can be detected and repaired by a variety of systems	847
The presence of thymine instead of uracil in DNA permits the repair of deaminated cytosine	849
Some genetic diseases are caused by the expansion of repeats of three nucleotides	850
Many cancers are caused by the defective repair of DNA	850
Many potential carcinogens can be detected by their mutagenic action on bacteria	852
28.5 DNA Recombination Plays Important Roles in	554
Replication, Repair, and Other Processes	852
RecA can initiate recombination by promoting strand invasion	853
Some recombination reactions proceed through Holliday-junction intermediates	854

CHAPTER 29 RNA Synthesis and Processing	859
RNA synthesis comprises three stages: Initiation, elongation, and termination	860
29.1 RNA Polymerases Catalyze Transcription	86-
RNA chains are formed de novo and grow in the 5'-to-3' direction	86
RNA polymerases backtrack and correct errors	86.
RNA polymerase binds to promoter sites on the DNA template to initiate transcription	86
Sigma subunits of RNA polymerase recognize promoter sites	86
RNA polymerases must unwind the template double helix for transcription to take place	86
Elongation takes place at transcription bubbles that move along the DNA template	86
Sequences within the newly transcribed RNA signal termination	86
Some messenger RNAs directly sense metabolite concentrations The <i>rho</i> protein helps to terminate the transcription	86
of some genes	86
Some antibiotics inhibit transcription	86
Precursors of transfer and ribosomal RNA are cleaved	
and chemically modified after transcription in prokaryotes	87
29.2 Transcription in Eukaryotes Is Highly Regulated Three types of RNA polymerase synthesize RNA in	87
eukaryotic cells	87
Three common elements can be found in the RNA polymerase II promoter region	87
The TFIID protein complex initiates the assembly of the active transcription complex Multiple transcription factors interact with eukaryotic	87
promoters Enhancer sequences can stimulate transcription at	87
start sites thousands of bases away	87
29.3 The Transcription Products of Eukaryotic Polymerases Are Processed	87
RNA polymerase I produces three ribosomal RNAs	87
RNA polymerase III produces transfer RNA	87
The product of RNA polymerase II, the pre-mRNA transcript, acquires a 5' cap and a 3' poly(A) tail	87
Small regulatory RNAs are cleaved from larger precursors	87
RNA editing changes the proteins encoded by mRNA Sequences at the ends of introns specify splice sites	87
in mRNA precursors Splicing consists of two sequential transesterification	88
reactions Small nuclear RNAs in spliceosomes catalyze the	88
splicing of mRNA precursors	88
Transcription and processing of mRNA are coupled	88
Mutations that affect pre-mRNA splicing cause disease	88
Most human pre-mRNAS can be spliced in alternative ways to yield different proteins	88
29.4 The Discovery of Catalytic RNA was Revealing in Regard to Both Mechanism and Evolution	88

CHAPTER 30 Protein Synthesis	893
30.1 Protein Synthesis Requires the Translation of Nucleotide Sequences into Amino Acid Sequences The synthesis of long proteins requires a low error	894
frequency	894
Transfer RNA molecules have a common design Some transfer RNA molecules recognize more than	895
one codon because of wobble in base-pairing	897
30.2 Aminoacyl Transfer RNA Synthetases Read the Genetic Code	898
Amino acids are first activated by adenylation	898
Aminoacyl-tRNA synthetases have highly discriminating amino acid activation sites	899
Proofreading by aminoacyl-tRNA synthetases increases the fidelity of protein synthesis	900
Synthetases recognize various features of transfer RNA molecules	901
Aminoacyl-tRNA synthetases can be divided into two classes	901
30.3 The Ribosome Is the Site of Protein Synthesis	902
Ribosomal RNAs (5S, 16S, and 23S rRNA) play a central role in protein synthesis	903
Ribosomes have three tRNA-binding sites that bridge the 30s and 50s subunits	905
The start signal is usually AUG preceded by several bases that pair with 16S rRNA	905
Bacterial protein synthesis is initiated by formylmethionyl transfer RNA	906
Formylmethionyl-tRNA _f is placed in the P site of the ribosome in the formation of the 70S initiation complex	907
Elongation factors deliver aminoacyl-tRNA to the ribosome	907
Peptidyl transferase catalyzes peptide-bond synthesis	908
The formation of a peptide bond is followed by the GTP- driven translocation of tRNAs and mRNA	909
Protein synthesis is terminated by release factors that read stop codons	910
30.4 Eukaryotic Protein Synthesis Differs from Bacterial Protein Synthesis Primarily in Translation	
Initiation	911
Mutations in initiation factor 2 cause a curious pathological condition	913
30.5 A Variety of Antibiotics and Toxins Can Inhibit Protein Synthesis	913
Some antibiotics inhibit protein synthesis	914
Diphtheria toxin blocks protein synthesis in	
eukaryotes by inhibiting translocation	914
Ricin fatally modifies 28S ribosomal RNA	915
30.6 Ribosomes Bound to the Endoplasmic Reticulum Manufacture Secretory and Membrane	
Proteins	915
Protein synthesis begins on ribosomes that are free in the cytoplasm	916
Signal sequences mark proteins for translocation across the endoplasmic reticulum membrane	916

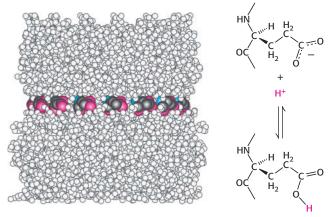
CHAPTER 31 The Control of Gene Expression in Prokaryotes92531.1 Many DNA-Binding Proteins Recognize Specific DNA Sequences926The helix-turn-helix motif is common to many prokaryotic DNA-binding proteins92731.2 Prokaryotic DNA-Binding Proteins Bind Specifically to Regulatory Sites in Operons927An operon consists of regulatory elements and protein-encoding genes928The lac repressor protein in the absence of lactose binds to the operator and blocks transcription929Ligand binding can induce structural changes in regulatory proteins930The operon is a common regulatory unit in prokaryotes93131.3 Regulatory Circuits Can Result in Switching Between Patterns of Gene Expression932The λ repressor regulates its own expression932A circuit based on the λ repressor and Cro forms a genetic switch933Many prokaryotic cells release chemical signals that regulate gene expression in other cells933Biofilms are complex communities of prokaryotes93431.4 Gene Expression Can Be Controlled at Posttranscriptional Levels935Attenuation is a prokaryotic mechanism for regulating transcription through the modulation of nascent RNA secondary structure935CHAPTER 32 The Control of Gene Expression in Eukaryotes941
Specific DNA Sequences926The helix-turn-helix motif is common to many prokaryotic DNA-binding proteins927 31.2 Prokaryotic DNA-Binding Proteins Bind Specifically to Regulatory Sites in Operons927An operon consists of regulatory elements and protein-encoding genes928The <i>lac</i> repressor protein in the absence of lactose binds to the operator and blocks transcription929Ligand binding can induce structural changes in regulatory proteins930The operon is a common regulatory unit in prokaryotes930The operon is a common regulatory unit in prokaryotes931 31.3 Regulatory Circuits Can Result in Switching Between Patterns of Gene Expression932The λ repressor regulates its own expression a genetic switch933Many prokaryotic cells release chemical signals that regulate gene expression in other cells933Biofilms are complex communities of prokaryotes934 31.4 Gene Expression Can Be Controlled at Posttranscriptional Levels935Attenuation is a prokaryotic mechanism for regulating transcription through the modulation of nascent RNA secondary structure935
Specific DNA Sequences926The helix-turn-helix motif is common to many prokaryotic DNA-binding proteins927 31.2 Prokaryotic DNA-Binding Proteins Bind Specifically to Regulatory Sites in Operons927An operon consists of regulatory elements and protein-encoding genes928The <i>lac</i> repressor protein in the absence of lactose binds to the operator and blocks transcription929Ligand binding can induce structural changes in regulatory proteins930The operon is a common regulatory unit in prokaryotes930The operon is a common regulatory unit in prokaryotes931 31.3 Regulatory Circuits Can Result in Switching Between Patterns of Gene Expression932The λ repressor regulates its own expression a genetic switch933Many prokaryotic cells release chemical signals that regulate gene expression in other cells933Biofilms are complex communities of prokaryotes934 31.4 Gene Expression Can Be Controlled at Posttranscriptional Levels935Attenuation is a prokaryotic mechanism for regulating transcription through the modulation of nascent RNA secondary structure935
prokaryotic DNA-binding proteins927 31.2 Prokaryotic DNA-Binding Proteins Bind Specifically to Regulatory Sites in Operons927An operon consists of regulatory elements and protein-encoding genes928The lac repressor protein in the absence of lactose binds to the operator and blocks transcription929Ligand binding can induce structural changes in regulatory proteins930The operon is a common regulatory unit in prokaryotes930Transcription can be stimulated by proteins that contact RNA polymerase931 31.3 Regulatory Circuits Can Result in Switching Between Patterns of Gene Expression932The λ repressor regulates its own expression a genetic switch933Many prokaryotic cells release chemical signals that regulate gene expression in other cells933Biofilms are complex communities of prokaryotes934 31.4 Gene Expression Can Be Controlled at Posttranscriptional Levels935Attenuation is a prokaryotic mechanism for regulating transcription through the modulation of nascent RNA secondary structure935
31.2 Prokaryotic DNA-Binding Proteins Bind Specifically to Regulatory Sites in Operons927An operon consists of regulatory elements and protein-encoding genes928The lac repressor protein in the absence of lactose binds to the operator and blocks transcription929Ligand binding can induce structural changes in regulatory proteins930The operon is a common regulatory unit in prokaryotes Transcription can be stimulated by proteins that contact RNA polymerase931 31.3 Regulatory Circuits Can Result in Switching Between Patterns of Gene Expression932The λ repressor regulates its own expression a genetic switch933Many prokaryotic cells release chemical signals that regulate gene expression in other cells933Biofilms are complex communities of prokaryotes934 31.4 Gene Expression Can Be Controlled at Posttranscriptional Levels935Attenuation is a prokaryotic mechanism for regulating transcription through the modulation of nascent RNA secondary structure935
Specifically to Regulatory Sites in Operons927An operon consists of regulatory elements and protein-encoding genes928The lac repressor protein in the absence of lactose binds to the operator and blocks transcription929Ligand binding can induce structural changes in regulatory proteins930The operon is a common regulatory unit in prokaryotes930Transcription can be stimulated by proteins that contact RNA polymerase931 31.3 Regulatory Circuits Can Result in Switching Between Patterns of Gene Expression932A circuit based on the λ repressor and Cro forms a genetic switch933Many prokaryotic cells release chemical signals that regulate gene expression in other cells933Biofilms are complex communities of prokaryotes934 31.4 Gene Expression Can Be Controlled at Posttranscriptional Levels935Attenuation is a prokaryotic mechanism for regulating transcription through the modulation of nascent RNA secondary structure935
An operon consists of regulatory elements and protein-encoding genes928The <i>lac</i> repressor protein in the absence of lactose binds to the operator and blocks transcription929Ligand binding can induce structural changes in regulatory proteins930The operon is a common regulatory unit in prokaryotes Transcription can be stimulated by proteins that contact RNA polymerase931 31.3 Regulatory Circuits Can Result in Switching Between Patterns of Gene Expression932The λ repressor regulates its own expression932A circuit based on the λ repressor and Cro forms a genetic switch933Many prokaryotic cells release chemical signals that regulate gene expression in other cells933Biofilms are complex communities of prokaryotes934 31.4 Gene Expression Can Be Controlled at Posttranscriptional Levels935Attenuation is a prokaryotic mechanism for regulating transcription through the modulation of nascent RNA secondary structure935CHAPTER 32 The Control of Gene Expression935
The lac repressor protein in the absence of lactose binds to the operator and blocks transcription929Ligand binding can induce structural changes in regulatory proteins930The operon is a common regulatory unit in prokaryotes Transcription can be stimulated by proteins that contact RNA polymerase931 31.3 Regulatory Circuits Can Result in Switching Between Patterns of Gene Expression932The λ repressor regulates its own expression932A circuit based on the λ repressor and Cro forms a genetic switch933Many prokaryotic cells release chemical signals that regulate gene expression in other cells933Biofilms are complex communities of prokaryotes934 31.4 Gene Expression Can Be Controlled at Posttranscriptional Levels935Attenuation is a prokaryotic mechanism for regulating transcription through the modulation of nascent RNA secondary structure935CHAPTER 32 The Control of Gene Expression935
binds to the operator and blocks transcription929Ligand binding can induce structural changes in regulatory proteins930The operon is a common regulatory unit in prokaryotes930Transcription can be stimulated by proteins that contact RNA polymerase931 31.3 Regulatory Circuits Can Result in Switching Between Patterns of Gene Expression932The λ repressor regulates its own expression932A circuit based on the λ repressor and Cro forms a genetic switch933Many prokaryotic cells release chemical signals that regulate gene expression in other cells933Biofilms are complex communities of prokaryotes934 31.4 Gene Expression Can Be Controlled at Posttranscriptional Levels935Attenuation is a prokaryotic mechanism for regulating transcription through the modulation of nascent RNA secondary structure935CHAPTER 32 The Control of Gene Expression935
regulatory proteins930The operon is a common regulatory unit in prokaryotes930Transcription can be stimulated by proteins that contact RNA polymerase931 31.3 Regulatory Circuits Can Result in Switching Between Patterns of Gene Expression932The λ repressor regulates its own expression932A circuit based on the λ repressor and Cro forms a genetic switch933Many prokaryotic cells release chemical signals that regulate gene expression in other cells933Biofilms are complex communities of prokaryotes934 31.4 Gene Expression Can Be Controlled at Posttranscriptional Levels935Attenuation is a prokaryotic mechanism for regulating transcription through the modulation of nascent RNA secondary structure935CHAPTER 32 The Control of Gene Expression930
The operon is a common regulatory unit in prokaryotes Transcription can be stimulated by proteins that contact RNA polymerase930 31.3 Regulatory Circuits Can Result in Switching Between Patterns of Gene Expression932The λ repressor regulates its own expression932A circuit based on the λ repressor and Cro forms a genetic switch933Many prokaryotic cells release chemical signals that regulate gene expression in other cells933Biofilms are complex communities of prokaryotes934 31.4 Gene Expression Can Be Controlled at Posttranscriptional Levels935Attenuation is a prokaryotic mechanism for regulating transcription through the modulation of nascent RNA secondary structure935CHAPTER 32 The Control of Gene Expression930
Transcription can be stimulated by proteins that contact RNA polymerase931 31.3 Regulatory Circuits Can Result in Switching Between Patterns of Gene Expression932The λ repressor regulates its own expression932A circuit based on the λ repressor and Cro forms a genetic switch933Many prokaryotic cells release chemical signals that regulate gene expression in other cells933Biofilms are complex communities of prokaryotes934 31.4 Gene Expression Can Be Controlled at Posttranscriptional Levels935Attenuation is a prokaryotic mechanism for regulating transcription through the modulation of nascent RNA secondary structure935CHAPTER 32 The Control of Gene Expression931
31.3 Regulatory Circuits Can Result in Switching Between Patterns of Gene Expression932The λ repressor regulates its own expression932A circuit based on the λ repressor and Cro forms a genetic switch933Many prokaryotic cells release chemical signals that regulate gene expression in other cells933Biofilms are complex communities of prokaryotes934 31.4 Gene Expression Can Be Controlled at Posttranscriptional Levels935Attenuation is a prokaryotic mechanism for regulating transcription through the modulation of nascent RNA secondary structure935CHAPTER 32 The Control of Gene Expression932
Between Patterns of Gene Expression932The λ repressor regulates its own expression932A circuit based on the λ repressor and Cro forms933a genetic switch933Many prokaryotic cells release chemical signals that933Biofilms are complex communities of prokaryotes934 31.4 Gene Expression Can Be Controlled at935Posttranscriptional Levels935Attenuation is a prokaryotic mechanism for regulating transcription through the modulation of nascent RNA secondary structure935CHAPTER 32 The Control of Gene Expression935
The λ repressor regulates its own expression932A circuit based on the λ repressor and Cro forms a genetic switch933Many prokaryotic cells release chemical signals that regulate gene expression in other cells933Biofilms are complex communities of prokaryotes934 31.4 Gene Expression Can Be Controlled at Posttranscriptional Levels 935Attenuation is a prokaryotic mechanism for regulating transcription through the modulation of nascent RNA secondary structure935CHAPTER 32 The Control of Gene Expression935
a genetic switch933Many prokaryotic cells release chemical signals that regulate gene expression in other cells933Biofilms are complex communities of prokaryotes934 31.4 Gene Expression Can Be Controlled at Posttranscriptional Levels935Attenuation is a prokaryotic mechanism for regulating transcription through the modulation of nascent RNA secondary structure935CHAPTER 32 The Control of Gene Expression935
Many prokaryotic cells release chemical signals that regulate gene expression in other cells933Biofilms are complex communities of prokaryotes934 31.4 Gene Expression Can Be Controlled at Posttranscriptional Levels935Attenuation is a prokaryotic mechanism for regulating transcription through the modulation of nascent RNA secondary structure935CHAPTER 32 The Control of Gene Expression935
regulate gene expression in other cells933Biofilms are complex communities of prokaryotes934 31.4 Gene Expression Can Be Controlled at935Posttranscriptional Levels935Attenuation is a prokaryotic mechanism for regulating transcription through the modulation of nascent RNA secondary structure935CHAPTER 32 The Control of Gene Expression935
31.4 Gene Expression Can Be Controlled at Posttranscriptional Levels935Attenuation is a prokaryotic mechanism for regulating transcription through the modulation of nascent RNA secondary structure935CHAPTER 32 The Control of Gene Expression
Posttranscriptional Levels 935 Attenuation is a prokaryotic mechanism for regulating transcription through the modulation of nascent RNA secondary structure 935 CHAPTER 32 The Control of Gene Expression
Attenuation is a prokaryotic mechanism for regulating transcription through the modulation of nascent RNA secondary structure 935 CHAPTER 32 The Control of Gene Expression
transcription through the modulation of nascent RNA secondary structure935CHAPTER 32 The Control of Gene Expression
32.1 Eukaryotic DNA Is Organized into Chromatin 943
Nucleosomes are complexes of DNA and histones943DNA wraps around histone octamers to form
nucleosomes 943
32.2 Transcription Factors Bind DNA and RegulateTranscription Initiation945
A range of DNA-binding structures are employed by eukaryotic DNA-binding proteins 945
Activation domains interact with other proteins 946
Multiple transcription factors interact with eukaryotic regulatory regions 946
Enhancers can stimulate transcription in specific cell types 946
Induced pluripotent stem cells can be generated by
introducing four transcription factors into differentiated cells 947
32.3 The Control of Gene Expression Can Require Chromatin Remodeling 948

The methylation of DNA can alter patterns of gene expression	949
Steroids and related hydrophobic molecules pass through membranes and bind to DNA-binding receptors	949
Nuclear hormone receptors regulate transcription by recruiting coactivators to the transcription complex	950
Steroid-hormone receptors are targets for drugs	951
Chromatin structure is modulated through covalent modifications of histone tails	952
Histone deacetylases contribute to transcriptional repression	953
32.4 Eukaryotic Gene Expression Can Be Controlled at Posttranscriptional Levels	954
Genes associated with iron metabolism are translationally regulated in animals	954
Small RNAs regulate the expression of many eukaryotic genes	956

Part IV RESPONDING TO ENVIRONMENTAL CHANGES

CHAPTER 33 Sensory Systems	961
33.1 A Wide Variety of Organic Compounds Are Detected by Olfaction	962
Olfaction is mediated by an enormous family of seven-transmembrane-helix receptors Odorants are decoded by a combinatorial mechanism	962 964
33.2 Taste Is a Combination of Senses That Function by Different Mechanisms	966
Sequencing of the human genome led to the discovery of a large family of 7TM bitter receptors	967
A heterodimeric 7TM receptor responds to sweet compounds	968
Umami, the taste of glutamate and aspartate, is mediated by a heterodimeric receptor related to the sweet receptor	969
Salty tastes are detected primarily by the passage of sodium ions through channels	969
Sour tastes arise from the effects of hydrogen ions (acids) on channels	969
33.3 Photoreceptor Molecules in the Eye Detect Visible Light	970
Rhodopsin, a specialized 7TM receptor, absorbs visible light	970
Light absorption induces a specific isomerization of bound 11- <i>cis</i> -retinal	971
Light-induced lowering of the calcium level coordinates recovery	972
Color vision is mediated by three cone receptors that are homologs of rhodopsin	973
Rearrangements in the genes for the green and red pigments lead to "color blindness"	974
33.4 Hearing Depends on the Speedy Detection of Mechanical Stimuli	975
Hair cells use a connected bundle of stereocilia to detect tiny motions	975

Mechanosensory channels have been identified in <i>Drosophila</i> and vertebrates	976
33.5 Touch Includes the Sensing of Pressure, Temperature, and Other Factors	977
Studies of capsaicin reveal a receptor for sensing high temperatures and other painful stimuli	977
CHAPTER 34 The Immune System	981
Innate immunity is an evolutionarily ancient defense	
system	982
The adaptive immune system responds by using the principles of evolution	984
34.1 Antibodies Possess Distinct Antigen-Binding and Effector Units	985
34.2 Antibodies Bind Specific Molecules Through	
Hypervariable Loops The immunoglobulin fold consists of a beta-sandwich	988
framework with hypervariable loops	988
X-ray analyses have revealed how antibodies bind	
antigens Large antigens bind antibodies with numerous	989
interactions	990
34.3 Diversity Is Generated by Gene Rearrangements	991
$J \ (joining) \ genes \ and \ D \ (diversity) \ genes \ increase antibody \ diversity$	991
More than 10 ⁸ antibodies can be formed by combinatorial association and somatic mutation	992
The oligomerization of antibodies expressed on the	992
surfaces of immature B cells triggers antibody secretion	993
Different classes of antibodies are formed by the hopping of $V_{\rm H}$ genes	994
34.4 Major-Histocompatibility-Complex Proteins	
Present Peptide Antigens on Cell Surfaces for Recognition by T-Cell Receptors	995
Peptides presented by MHC proteins occupy a deep	000
groove flanked by alpha helices	996
T-cell receptors are antibody-like proteins containing variable and constant regions	998
CD8 on cytotoxic T cells acts in concert with T-cell	770
receptors	998
Helper T cells stimulate cells that display foreign	1000
peptides bound to class II MHC proteins Helper T cells rely on the T-cell receptor and CD4 to	1000
recognize foreign peptides on antigen-presenting cells	1000
MHC proteins are highly diverse	1002
Human immunodeficiency viruses subvert the immune system by destroying helper T cells	1003
34.5 The Immune System Contributes to the	
Prevention and the Development of Human Diseases	1004
T cells are subjected to positive and negative selection	
in the thymus	1004
Autoimmune diseases result from the generation of immune responses against self-antigens	1005

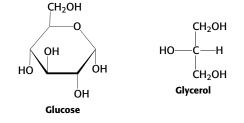

The immune system plays a role in cancer prevention	1005	Drugs m
Vaccines are a powerful means to prevent and		their tar
eradicate disease	1006	Toxicity
CHAPTER 35 Molecular Motors	1011	36.2 Drug Serendipit
		Serendip
35.1 Most Molecular-Motor Proteins Are Members	1010	developr
of the P-Loop NTPase Superfamily	1012	Natural
Molecular motors are generally oligomeric proteins with an ATPase core and an extended structure	1012	drug lead Screenin
ATP binding and hydrolysis induce changes in the	1012	the oppo
conformation and binding affinity of motor proteins	1014	Drugs ca
35.2 Myosins Move Along Actin Filaments	1016	structura
Actin is a polar, self-assembling, dynamic polymer	1016	36.3 Analy
Myosin head domains bind to actin filaments	1018	for Drug D
Motions of single motor proteins can be directly		Potentia
observed	1018	proteom
Phosphate release triggers the myosin power stroke	1019	Animal
Muscle is a complex of myosin and actin	1019	potentia
The length of the lever arm determines motor velocity	1022	Potentia pathoger
35.3 Kinesin and Dynein Move Along Microtubules	1022	Genetic
Microtubules are hollow cylindrical polymers	1022	to drugs
Kinesin motion is highly processive	1024	36.4 The
35.4 A Rotary Motor Drives Bacterial Motion	1026	Through S
Bacteria swim by rotating their flagella	1026	Clinical
Proton flow drives bacterial flagellar rotation	1026	expensiv
Bacterial chemotaxis depends on reversal of the		The evo
direction of flagellar rotation	1028	of drugs
CHAPTER 36 Drug Development	1033	Answers to
36.1 The Development of Drugs Presents Huge		Selected R
Challenges	1034	
Drug candidates must be potent and selective		Index
modulators of their targets	1035	

Drugs must have suitable properties to reach	
their targets	1036
Toxicity can limit drug effectiveness	1040
36.2 Drug Candidates Can Be Discovered by	
Serendipity, Screening, or Design	1041
Serendipitous observations can drive drug development	1041
Natural products are a valuable source of drugs and drug leads	1043
Screening libraries of synthetic compounds expands the opportunity for identification of drug leads	1044
Drugs can be designed on the basis of three-dimensional structural information about their targets	1046
36.3 Analyses of Genomes Hold Great Promise for Drug Discovery	1048
Potential targets can be identified in the human proteome	1048
Animal models can be developed to test the validity of potential drug targets	1049
Potential targets can be identified in the genomes of pathogens	1050
Genetic differences influence individual responses to drugs	1050
36.4 The Clinical Development of Drugs Proceeds Through Several Phases	1051
Clinical trials are time consuming and expensive	1052
The evolution of drug resistance can limit the utility of drugs for infectious agents and cancer	1053
Answers to Problems	A1
Selected Readings	B1
Index	C1

CHAPTER

Biochemistry: An Evolving Science

Chemistry in action. Human activities require energy. The interconversion of different forms of energy requires large biochemical machines comprising many thousands of atoms such as the complex shown above. Yet, the functions of these elaborate assemblies depend on simple chemical processes such as the protonation and deprotonation of the carboxylic acid groups shown on the right. The photograph is of Nobel Prize winners Peter Agre, M.D., and Carol Greider, Ph.D., who used, respectively, biochemical techniques to reveal key mechanisms of how water is transported into and out of cells, and how chromosomes are replicated faithfully. [Keith Weller for Johns Hopkins Medicine.]

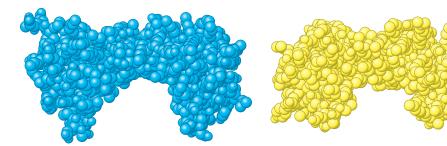

Biochemistry is the study of the chemistry of life processes. Since the discovery that biological molecules such as urea could be synthesized from nonliving components in 1828, scientists have explored the chemistry of life with great intensity. Through these investigations, many of the most fundamental mysteries of how living things function at a biochemical level have now been solved. However, much remains to be investigated. As is often the case, each discovery raises at least as many new questions as it answers. Furthermore, we are now in an age of unprecedented opportunity for the application of our tremendous knowledge of biochemistry to problems in medicine, dentistry, agriculture, forensics, anthropology, environmental sciences, alternative energy, and many other fields. We begin our journey into biochemistry with one of the most startling discoveries of the past century: namely, the great unity of all living things at the biochemical level.

1.1 Biochemical Unity Underlies Biological Diversity

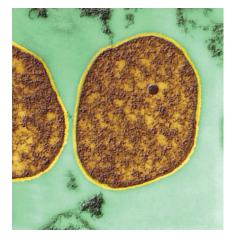
The biological world is magnificently diverse. The animal kingdom is rich with species ranging from nearly microscopic insects to elephants and whales. The plant kingdom includes species as small and relatively

OUTLINE

- **1.1** Biochemical Unity Underlies Biological Diversity
- **1.2** DNA Illustrates the Interplay Between Form and Function
- **1.3** Concepts from Chemistry Explain the Properties of Biological Molecules
- 1.4 The Genomic Revolution Is Transforming Biochemistry, Medicine, and Other Fields



simple as algae and as large and complex as giant sequoias. This diversity extends further when we descend into the microscopic world. Organisms such as protozoa, yeast, and bacteria are present with great diversity in water, in soil, and on or within larger organisms. Some organisms can survive and even thrive in seemingly hostile environments such as hot springs and glaciers.


The development of the microscope revealed a key unifying feature that underlies this diversity. Large organisms are built up of *cells*, resembling, to some extent, single-celled microscopic organisms. The construction of animals, plants, and microorganisms from cells suggested that these diverse organisms might have more in common than is apparent from their outward appearance. With the development of biochemistry, this suggestion has been tremendously supported and expanded. At the biochemical level, all organisms have many common features (Figure 1.1).

As mentioned earlier, biochemistry is the study of the chemistry of life processes. These processes entail the interplay of two different classes of molecules: large molecules such as proteins and nucleic acids, referred to as *biological macromolecules*, and low-molecular-weight molecules such as glucose and glycerol, referred to as *metabolites*, that are chemically transformed in biological processes.

Members of both these classes of molecules are common, with minor variations, to all living things. For example, <u>deoxyribonucleic acid</u> (DNA) stores genetic information in all cellular organisms. *Proteins*, the macromolecules that are key participants in most biological processes, are built from the same set of 20 building blocks in all organisms. Furthermore, proteins that play similar roles in different organisms often have very similar three-dimensional structures (Figure 1.1).

Sulfolobus archaea

Arabidopsis thaliana

Homo sapiens

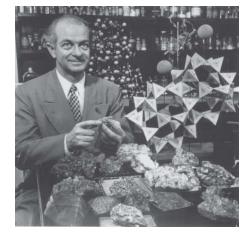


FIGURE 1.1 Biological diversity and similarity. The shape of a key molecule in gene regulation (the TATA-box-binding protein) is similar in three very different organisms that are separated from one another by billions of years of evolution. [(Left) Eye of Science/Science Source; (middle) Holt Studios/Photo Researchers; (right) Time Life Pictures/Getty Images.]

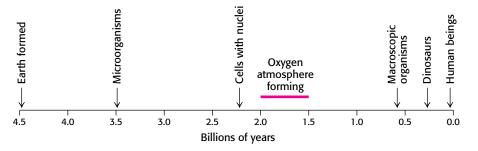


FIGURE 1.2 A possible time line for biochemical evolution. Selected key events are indicated. Note that life on Earth began approximately 3.5 billion years ago, whereas human beings emerged quite recently.

Key metabolic processes also are common to many organisms. For example, the set of chemical transformations that converts glucose and oxygen into carbon dioxide and water is essentially identical in simple bacteria such as Escherichia coli (E. coli) and human beings. Even processes that appear to be quite distinct often have common features at the biochemical level. Remarkably, the biochemical processes by which plants capture light energy and convert it into more-useful forms are strikingly similar to steps used in animals to capture energy released from the breakdown of glucose.

These observations overwhelmingly suggest that all living things on Earth have a common ancestor and that modern organisms have evolved from this ancestor into their present forms. Geological and biochemical findings support a time line for this evolutionary path (Figure 1.2). On the basis of their biochemical characteristics, the diverse organisms of the modern world can be divided into three fundamental groups called domains: Eukarya (eukaryotes), Bacteria, and Archaea. Domain Eukarya comprises all multicellular organisms, including human beings as well as many microscopic unicellular organisms such as yeast. The defining characteristic of *eukaryotes* is the presence of a well-defined nucleus within each cell. Unicellular organisms such as bacteria, which lack a nucleus, are referred to as prokaryotes. The prokaryotes were reclassified as two separate domains in response to Carl Woese's discovery in 1977 that certain bacteria-like organisms are biochemically quite distinct from other previously characterized bacterial species.

These organisms, now recognized as having diverged from bacteria early in evolution, are the archaea. Evolutionary paths from a common ancestor to modern organisms can be deduced on the basis of biochemical information. One such path is shown in Figure 1.3.

Much of this book will explore the chemical reactions and the associated biological macromolecules and metabolites that are found in biological processes common to all organisms. The unity of life at the biochemical level makes this approach possible. At the same time, different organisms have specific needs, depending on the particular biological niche in which they evolved and live. By comparing and contrasting details of particular biochemical pathways in different organisms, we can learn how biological challenges are solved at the biochemical level. In most cases, these challenges are addressed by the adaptation of existing macromolecules to new roles rather than by the evolution of entirely new ones.

Biochemistry has been greatly enriched by our ability to examine the three-dimensional structures of biological macromolecules in great detail. Some of these structures

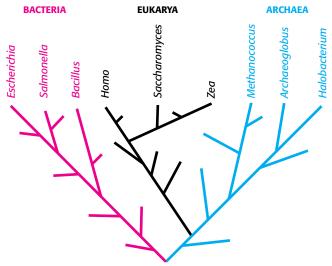
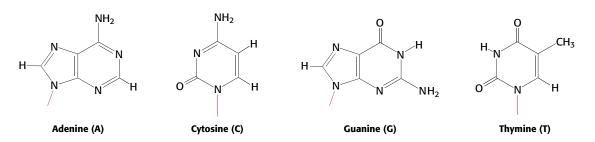


FIGURE 1.3 The tree of life. A possible evolutionary path from a common ancestor approximately 3.5 billion years ago at the bottom of the tree to organisms found in the modern world at the top.

3

CHAPTER 1 Biochemistry: An Evolving Science are simple and elegant, whereas others are incredibly complicated. In any case, these structures provide an essential framework for understanding function. We begin our exploration of the interplay between structure and function with the genetic material, DNA.


1.2 DNA Illustrates the Interplay Between Form and Function

A fundamental biochemical feature common to all cellular organisms is the use of DNA for the storage of genetic information. The discovery that DNA plays this central role was first made in studies of bacteria in the 1940s. This discovery was followed by a compelling proposal for the three-dimensional structure of DNA in 1953, an event that set the stage for many of the advances in biochemistry and many other fields, extending to the present.

The structure of DNA powerfully illustrates a basic principle common to all biological macromolecules: the intimate relation between structure and function. The remarkable properties of this chemical substance allow it to function as a very efficient and robust vehicle for storing information. We start with an examination of the covalent structure of DNA and its extension into three dimensions.

DNA is constructed from four building blocks

DNA is a *linear polymer* made up of four different types of monomers. It has a fixed backbone from which protrude variable substituents, referred to as bases (Figure 1.4). The backbone is built of repeating sugar–phosphate units. The sugars are molecules of *deoxyribose* from which DNA receives its name. Each sugar is connected to two phosphate groups through different linkages. Moreover, each sugar is oriented in the same way, and so each DNA strand has directionality, with one end distinguishable from the other. Joined to each deoxyribose is one of four possible bases: adenine (A), cytosine (C), guanine (G), and thymine (T).

These bases are connected to the sugar components in the DNA backbone through the bonds shown in black in Figure 1.4. All four bases are planar but differ significantly in other respects. Thus, each monomer of DNA consists of a sugar-phosphate unit and one of four bases attached to the sugar. These bases can be arranged in any order along a strand of DNA.

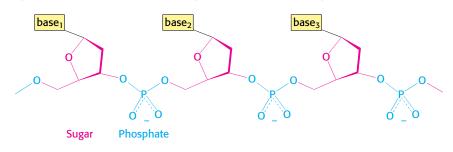
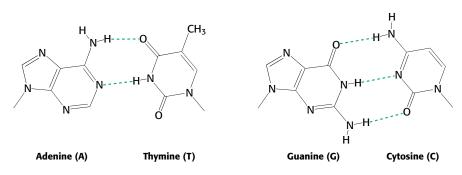


FIGURE 1.4 Covalent structure of DNA. Each unit of the polymeric structure is composed of a sugar (deoxyribose), a phosphate, and a variable base that protrudes from the sugar–phosphate backbone.

Two single strands of DNA combine to form a double helix


1.2 DNA: Form and Function

Most DNA molecules consist of not one but two strands (Figure 1.5). In 1953, James Watson and Francis Crick deduced the arrangement of these strands and proposed a three-dimensional structure for DNA molecules.

This structure is a *double helix* composed of two intertwined strands arranged such that the sugar-phosphate backbone lies on the outside and the bases on the inside. The key to this structure is that the bases form *specific base pairs* (bp) held together by *hydrogen bonds* (Section 1.3): adenine pairs with thymine (A–T) and guanine pairs with cytosine (G–C), as shown in Figure 1.6. Hydrogen bonds are much weaker than *covalent bonds* such as the carboncarbon or carbon-nitrogen bonds that define the structures of the bases themselves. Such weak bonds are crucial to biochemical systems; they are weak enough to be reversibly broken in biochemical processes, yet they are strong enough, particularly when many form simultaneously, to help stabilize specific structures such as the double helix.

FIGURE 1.5 The double helix. The double-helical structure of DNA proposed by Watson and Crick. The sugar–phosphate backbones of the two chains are shown in red and blue, and the bases are shown in green, purple, orange, and yellow. The two strands are antiparallel, running in opposite directions with respect to the axis of the double helix, as indicated by the arrows.

FIGURE 1.6 Watson–Crick base pairs. Adenine pairs with thymine (A–T), and guanine with cytosine (G–C). The dashed green lines represent hydrogen bonds.

DNA structure explains heredity and the storage of information

The structure proposed by Watson and Crick has two properties of central importance to the role of DNA as the hereditary material. First, the structure is compatible with any sequence of bases. While the bases are distinct in structure, the base pairs have essentially the same shape (Figure 1.6) and thus fit equally well into the center of the double-helical structure of any sequence. Without any constraints, the sequence of bases along a DNA strand can act as an efficient means of storing information. Indeed, the sequence of bases along DNA strands is how genetic information is stored. The DNA sequence determines the sequences of the ribonucleic acid (RNA) and protein molecules that carry out most of the activities within cells.

Second, because of base-pairing, the sequence of bases along one strand completely determines the sequence along the other strand. As Watson and Crick so coyly wrote: "It has not escaped our notice that the specific pairing we have postulated immediately suggests a possible copying mechanism for the genetic material." Thus, if the DNA double helix is separated into two single strands, each strand can act as a template for the generation of its partner strand through specific base-pair formation (Figure 1.7). The threedimensional structure of DNA beautifully illustrates the close connection between molecular form and function.

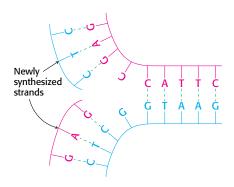


FIGURE 1.7 DNA replication. If a DNA molecule is separated into two strands, each strand can act as the template for the generation of its partner strand.

1.3 Concepts from Chemistry Explain the Properties of Biological Molecules

We have seen how a chemical insight into the hydrogen-bonding capabilities of the bases of DNA led to a deep understanding of a fundamental biological process. To lay the groundwork for the rest of the book, we begin our study of biochemistry by examining selected concepts from chemistry and showing how these concepts apply to biological systems. The concepts include the types of chemical bonds; the structure of water, the solvent in which most biochemical processes take place; the First and Second Laws of Thermodynamics; and the principles of acid–base chemistry.

The formation of the DNA double helix as a key example

We will use these concepts to examine an archetypical biochemical process namely, the formation of a DNA double helix from its two component strands. The process is but one of many examples that could have been chosen to illustrate these topics. Keep in mind that, although the specific discussion is about DNA and double-helix formation, the concepts considered are quite general and will apply to many other classes of molecules and processes that will be discussed in the remainder of the book. In the course of these discussions, we will touch on the properties of water and the concepts of pK_a and buffers that are of great importance to many aspects of biochemistry.

The double helix can form from its component strands

The discovery that DNA from natural sources exists in a double-helical form with Watson–Crick base pairs suggested, but did not prove, that such double helices would form spontaneously outside biological systems. Suppose that two short strands of DNA were chemically synthesized to

have complementary sequences so that they could, in principle, form a double helix with Watson–Crick base pairs. Two such sequences are CGATTAAT and ATTAATCG. The structures of these molecules in solution can be examined by a variety of techniques. In isolation, each sequence exists almost exclusively as a single-stranded molecule. However, when the two sequences are mixed, a double helix with Watson–Crick base pairs does form (Figure 1.8). This reaction proceeds nearly to completion.

What forces cause the two strands of DNA to bind to each other? To analyze this binding reaction, we must consider several factors: the types of interactions and bonds in biochemical systems and the energetic favorability of the reaction. We must also consider the influence of the solution conditions—in particular, the consequences of acid– base reactions.

Covalent and noncovalent bonds are important for the structure and stability of biological molecules

Atoms interact with one another through chemical bonds. These bonds include the covalent bonds that define the structure of molecules as well as a variety of noncovalent bonds that are of great importance to biochemistry.

Covalent bonds. The strongest bonds are covalent bonds, such as the bonds that hold the atoms together within the individual bases shown on page 4. A covalent bond is formed by the sharing of a pair of electrons between adjacent atoms. A typical carbon–carbon (C-C) covalent bond has

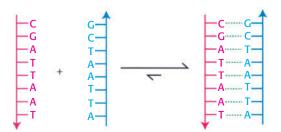
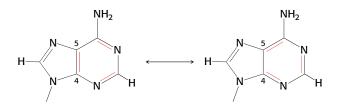



FIGURE 1.8 Formation of a double helix. When two DNA strands with appropriate, complementary sequences are mixed, they spontaneously assemble to form a double helix.

a bond length of 1.54 Å and bond energy of 355 kJ mol⁻¹ (85 kcal mol⁻¹). Because covalent bonds are so strong, considerable energy must be expended to break them. More than one electron pair can be shared between two atoms to form a multiple covalent bond. For example, three of the bases in Figure 1.6 include carbon–oxygen (C=O) double bonds. These bonds are even stronger than C—C single bonds, with energies near 730 kJ mol⁻¹ (175 kcal mol⁻¹) and are somewhat shorter.

For some molecules, more than one pattern of covalent bonding can be written. For example, adenine can be written in two nearly equivalent ways called *resonance structures*.

These adenine structures depict alternative arrangements of single and double bonds that are possible within the same structural framework. Resonance structures are shown connected by a double-headed arrow. Adenine's true structure is a composite of its two resonance structures. The composite structure is manifested in the bond lengths such as that for the bond joining carbon atoms C-4 and C-5. The observed bond length of 1.40 Å is between that expected for a C—C single bond (1.54 Å) and a C—C double bond (1.34 Å). A molecule that can be written as several resonance structures of approximately equal energies has greater stability than does a molecule without multiple resonance structures.

Noncovalent bonds. Noncovalent bonds are weaker than covalent bonds but are crucial for biochemical processes such as the formation of a double helix. Four fundamental noncovalent bond types are *ionic interactions*, *hydrogen bonds, van der Waals interactions*, and *hydrophobic interactions*. They differ in geometry, strength, and specificity. Furthermore, these bonds are affected in vastly different ways by the presence of water. Let us consider the characteristics of each type:

1. *Ionic Interactions*. A charged group on one molecule can attract an oppositely charged group on the same or another molecule. The energy of an ionic interaction (sometimes called an electrostatic interaction) is given by the *Coulomb energy*:

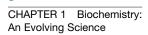
$$E = kq_1q_2/Dr$$

where *E* is the energy, q_1 and q_2 are the charges on the two atoms (in units of the electronic charge), *r* is the distance between the two atoms (in angstroms), *D* is the dielectric constant (which decreases the strength of the Coulomb depending on the intervening solvent or medium), and *k* is a proportionality constant (k = 1389, for energies in units of kilojoules per mole, or 332 for energies in kilocalories per mole).

By convention, an attractive interaction has a negative energy. The ionic interaction between two ions bearing single opposite charges separated by 3 Å in water (which has a dielectric constant of 80) has an energy of -5.8 kJ mol^{-1} ($-1.4 \text{ kcal mol}^{-1}$). Note how important the dielectric constant of the medium is. For the same ions separated by 3 Å in a nonpolar solvent such as hexane (which has a dielectric constant of 2), the energy of this interaction is -232 kJ mol^{-1} ($-55 \text{ kcal mol}^{-1}$).

1.3 Chemical Concepts

7


Distance and energy units

 (q_1)

(**q**2)

Interatomic distances and bond lengths are usually measured in angstrom (Å) units:

Several energy units are in common use. One joule (J) is the amount of energy required to move 1 meter against a force of 1 newton. A kilojoule (kJ) is 1000 joules. One calorie is the amount of energy required to raise the temperature of 1 gram of water 1 degree Celsius. A kilocalorie (kcal) is 1000 calories. One joule is equal to 0.239 cal.

8

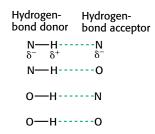


FIGURE 1.9 Hydrogen bonds. Hydrogen bonds are depicted by dashed green lines. The positions of the partial charges (δ^+ and δ^-) are shown.

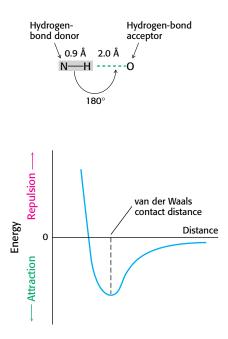


FIGURE 1.10 Energy of a van der Waals interaction as two atoms approach each other. The energy is most favorable at the van der Waals contact distance. Owing to electron–electron repulsion, the energy rises rapidly as the distance between the atoms becomes shorter than the contact distance.

2. Hydrogen Bonds. These interactions are largely ionic interactions, with partial charges on nearby atoms attracting one another. Hydrogen bonds are responsible for specific base-pair formation in the DNA double helix. The hydrogen atom in a hydrogen bond is partially shared by two electronegative atoms such as nitrogen or oxygen. The hydrogen-bond donor is the group that includes both the atom to which the hydrogen atom is more tightly linked and the hydrogen atom itself, whereas the hydrogen-bond acceptor is the atom less tightly linked to the hydrogen atom (Figure 1.9). The electronegative atom to which the hydrogen atom is covalently bonded pulls electron density away from the hydrogen atom, which thus develops a partial positive charge (δ^+). Thus, the hydrogen atom with a partial positive charge can interact with an atom having a partial negative charge (δ^-) through an ionic interaction.

Hydrogen bonds are much weaker than covalent bonds. They have energies ranging from 4 to 20 kJ mol⁻¹ (from 1 to 5 kcal mol⁻¹). Hydrogen bonds are also somewhat longer than covalent bonds; their bond lengths (measured from the hydrogen atom) range from 1.5 Å to 2.6 Å; hence, a distance ranging from 2.4 Å to 3.5 Å separates the two nonhydrogen atoms in a hydrogen bond.

The strongest hydrogen bonds have a tendency to be approximately straight, such that the hydrogen-bond donor, the hydrogen atom, and the hydrogen-bond acceptor lie along a straight line. This tendency toward linearity can be important for orienting interacting molecules with respect to one another. Hydrogen-bonding interactions are responsible for many of the properties of water that make it such a special solvent, as will be described shortly.

3. van der Waals Interactions. The basis of a van der Waals interaction is that the distribution of electronic charge around an atom fluctuates with time. At any instant, the charge distribution is not perfectly symmetric. This transient asymmetry in the electronic charge about an atom acts through ionic interactions to induce a complementary asymmetry in the electron distribution within its neighboring atoms. The atom and its neighbors then attract one another. This attraction increases as two atoms come closer to each other, until they are separated by the van der Waals *contact distance* (Figure 1.10). At distances shorter than the van der Waals contact distance, very strong repulsive forces become dominant because the outer electron clouds of the two atoms overlap.

Energies associated with van der Waals interactions are quite small; typical interactions contribute from 2 to 4 kJ mol⁻¹ (from 0.5 to 1 kcal mol⁻¹) per atom pair. When the surfaces of two large molecules come together, however, a large number of atoms are in van der Waals contact, and the net effect, summed over many atom pairs, can be substantial.

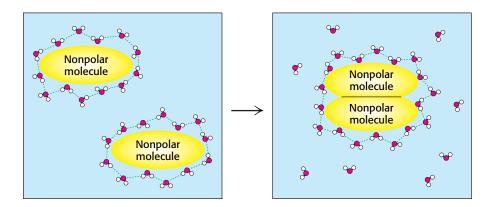
We will cover the fourth noncovalent interaction, the hydrophobic interaction, after we examine the characteristics of water; these characteristics are essential to understanding the hydrophobic interaction.

Properties of water. Water is the solvent in which most biochemical reactions take place, and its properties are essential to the formation of macro-molecular structures and the progress of chemical reactions. Two properties of water are especially relevant:

1. *Water is a polar molecule*. The water molecule is bent, not linear, and so the distribution of charge is asymmetric. The oxygen nucleus draws electrons away from the two hydrogen nuclei, which leaves the region around

each hydrogen atom with a net positive charge. The water molecule is thus an electrically polar structure.

2. Water is highly cohesive. Water molecules interact strongly with one another through hydrogen bonds. These interactions are apparent in the structure of ice (Figure 1.11). Networks of hydrogen bonds hold the


structure together; similar interactions link molecules in liquid water and account for many of the properties of water. In the liquid state, approximately one in four of the hydrogen bonds present in ice are broken. The polar nature of water is responsible for its high dielectric constant of 80. Molecules in aqueous solution interact with water molecules through the formation of hydrogen bonds and through ionic interactions. These interactions make water a versatile solvent, able to readily dissolve many species, especially polar and charged compounds that can participate in these interactions.

The hydrophobic effect. A final fundamental interaction called the hydrophobic effect is a manifestation of the properties of water. Some molecules (termed nonpolar molecules) cannot participate in hydrogen bonding or ionic interactions. The interactions of nonpolar molecules with water molecules are not as favorable as are interactions between the water molecules themselves. The water molecules in contact with these nonpolar molecules form "cages" around

them, becoming more well ordered than water molecules free in solution. However, when two such nonpolar molecules come together, some of the water molecules are released, allowing them to interact freely with bulk water (Figure 1.12). The release of water from such cages is favorable for reasons to be considered shortly. The result is that nonpolar molecules show an increased tendency to associate with one another in water compared with other, less polar and less self-associating, solvents. This tendency is called the hydrophobic effect and the associated interactions are called *hydrophobic interactions*.

The double helix is an expression of the rules of chemistry

Let us now see how these four noncovalent interactions work together in driving the association of two strands of DNA to form a double helix. First, each phosphate group in a DNA strand carries a negative charge. These negatively charged groups interact unfavorably with one another over distances. Thus, unfavorable ionic interactions take place when two strands of

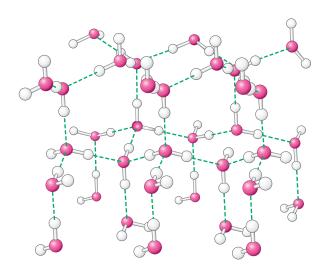


FIGURE 1.11 Structure of ice. Hydrogen bonds (shown as dashed green lines) are formed between water molecules to produce a highly ordered and open structure.

FIGURE 1.12 The hydrophobic

effect. The aggregation of nonpolar groups in water leads to the release of water molecules, initially interacting with the nonpolar surface, into bulk water. The release of water molecules into solution makes the aggregation of nonpolar groups favorable.

q