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For several generations of students and teachers, 

Biochemistry has been an invaluable resource, pre-

senting the concepts and details of molecular structure, 

metabolism, and laboratory techniques in a streamlined 

and engaging way. Biochemistry’s success in helping 

students learn the subject for the first time is built on a 

number of hallmark features:

•  Clear writing and simple illustrations. The lan-

guage of biochemistry is made as accessible as possi-

ble for students learning the subject for the first time. 

To complement the straightforward language and 

organization of concepts in the text, figures illustrate 

a single concept at a time to help students see main 

points without the distraction of excess detail.

•  Physiological relevance. It has always been our 

goal to help students connect biochemistry to their 

own lives on a variety of scales. Pathways and pro-

cesses are presented in a physiological context so 

students can see how biochemistry works in the 

body and under different conditions, and Clinical 

Application sections in every chapter show students 

how the concepts they are studying impact human 

health. The eighth edition includes a number of new 

Clinical Application sections based on recent dis-

coveries in biochemistry and health. (For a full list, 

see p. xi)

•  Evolutionary perspective. Discussions of evolution 

are woven into the narrative of the text, just as evolu-

tion shapes every pathway and molecular structure 

described in the text. Molecular Evolution sections 

highlight important milestones in the evolution of 

life as a way to provide context for the processes and 

molecules being discussed. (For a full list, see p. x)

•  Problem-solving practice. Every chapter of 

Biochemistry provides numerous opportunities for 

students to practice problem-solving skills and apply 

the concepts described in the text. End-of-chapter 

problems are divided into three categories to address 

different problem-solving skills: Mechanism prob-

lems ask students to suggest or describe a chemical 

mechanism; Data interpretation problems ask stu-

dents to draw conclusions from data taken from real 

research papers; and chapter integration problems 

require students to connect concepts from across 

chapters. Further problem-solving practice is pro-

vided online, on the Biochemistry LaunchPad. (For 

more details on LaunchPad resources, see p. viii)

•  A variety of molecular structures. All molecular 

structures in the book, with few exceptions, have been 

selected and rendered by Jeremy Berg and Gregory 

Gatto to emphasize the aspect of structure most impor-

tant to the topic at hand. Students are introduced to 

realistic renderings of molecules through a molecular 

model “primer” in the appendices to Chapters 1 and 2 

so they are well-equipped to recognize and interpret 

the structures throughout the book. Figure legends 

direct students explicitly to the key features of a model, 

and often include PDB numbers so the reader can 

access the file used in generating the structure from the 

Protein Data Bank website (www.pdb.org). Students 
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Figure 27.12 An idealized representation of fuels use as a function 
of aerobic exercise intensity. (A) With increased exercise intensity, the 
use of fats as fuels falls as the utilization of  glucose increases. (B) The 
respiratory quotient (RQ) measures the alteration in fuel use.
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vi Preface

can explore molecular structures further online through 

the Living Figures, in which they can rotate 3D models 

of molecules and view alternative renderings.

In this revision of Biochemistry, we focused on build-

ing on the strengths of the previous editions to present 

biochemistry in an even more clear and streamlined 

manner, as well as incorporating exciting new advances 

from the field. Throughout the book, we have updated 

explanations of basic concepts and bolstered them with 

examples from new research. Some new topics that we 

present in the eighth edition include:

•  Environmental factors that influence human 

 biochemistry (Chapter 1)

•  Genome editing (Chapter 5)

•  Horizontal gene transfer events that may explain unex-

pected branches of the evolutionary tree (Chapter 6)

•  Penicillin irreversibly inactivating a key enzyme in 

bacterial cell-wall synthesis (Chapter 8)

•  Scientists watching single molecules of myosin 

move (Chapter 9)

•  Glycosylation functions in nutrient sensing 

(Chapter 11)

• The structure of a SNARE complex (Chapter 12) 

• The mechanism of ABC transporters (Chapter 13)

• The structure of the gap junction (Chapter 13)

•  The structural basis for activation of the b-adrenergic 

receptor (Chapter 14)

•  Excessive fructose consumption can lead to patho-

logical conditions (Chapter 16)

•  Alterations in the glycolytic pathway by cancer cells 

(Chapter 16)

•  Regulation of mitochondrial ATP synthase 

(Chapter 18)

• Control of chloroplast ATP synthase (Chapter 19)

• Activation of rubisco by rubisco activase (Chapter 20)
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Figure 9.48 Single molecule motion. (A) A trace of the position of a single dimeric myosin V molecule as it moves across a 
surface coated with actin filaments. (B) A model of how the dimeric molecule moves in discrete steps with an average size of 
74 6 5 nm. [Data from A. Yildiz et al., Science 300(5628)2061–2065, 2003.]

Figure 12.39 SNARE complexes initiate membrane fusion. The SNARE protein synaptobrevin 
(yellow) from one membrane forms a tight four-helical bundle with the corresponding SNARE 
proteins syntaxin-1 (blue) and SNAP25 (red) from a second membrane. The complex brings the 
membranes close together, initiating the fusion event. [Drawn from 1SFC.pdb.] 
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•  The role of the pentose phosphate pathway in rapid 

cell growth (Chapter 20)

•  Biochemical characteristics of muscle fiber types 

(Chapter 21)

•  Alteration of fatty acid metabolism in tumor cells 

(Chapter 22)

•  Biochemical basis of neurological symptoms of 

 phenylketonuria (Chapter 24)

•  Ribonucleotide reductase as a chemotherapeutic 

 target (Chapter 25)

•  The role of excess choline in the development of 

heart disease (Chapter 26)

•  Cycling of the LDL receptor is regulated (Chapter 26)

•  The role of ceramide metabolism in stimulating 

tumor growth (Chapter 26)

•  The extraordinary power of DNA repair systems 

illustrated by Deinococcus radiodurans (Chapter 28)

•  The structural details of ligand binding by TLRs 

(Chapter 34)



viii

All of the new media resources for Biochemistry will be 

available in our new system.

www.macmillanhighered.com/launchpad/berg8e

LaunchPad is a dynamic, fully integrated learning 

environment that brings together all of our teaching and 

learning resources in one place. It also contains the fully 

interactive e-Book and other newly updated resources 

for students and instructors, including the following:

•  NEW Case Studies are a series of biochemistry 

case studies you can integrate into your course. Each 

case study gives students practice in working with 

data, developing critical thinking skills, connecting 

topics, and applying knowledge to real scenarios. 

We also provide instructional guidance with each 

case study (with suggestions on how to use the case 

in the classroom) and aligned assessment questions 

for quizzes and exams.

•  Newly Updated Clicker Questions allow instruc-

tors to integrate active learning in the classroom and 

to assess students’ understanding of key concepts 

during lectures. Available in Microsoft Word and 

PowerPoint (PPT).

•  Newly Updated Lecture PowerPoints have been 

developed to minimize preparation time for new 

users of the book. These files offer suggested  lectures 

including key illustrations and summaries that 

instructors can adapt to their teaching styles. 

•  Updated Layered PPTs deconstruct key 

concepts, sequences, and processes from the 

textbook images, allowing instructors to pres-

ent complex ideas step-by-step.

•  Updated Textbook Images and Tables are 

offered as high-resolution JPEG files. Each 

image has been fully optimized to increase 

type sizes and adjust color saturation. These 

images have been  tested in a large lecture hall 

to ensure maximum clarity and visibility.

•  The Clinical Companion, by Gregory 

Raner, The University of North Carolina at 

Greensboro and  Douglas Root, University of 

North Texas, applies concepts that students 

have learned in the book to novel medical situ-

ations. Students read clinical case studies and 

use basic biochemistry concepts to solve the 

medical mysteries, applying and reinforcing 

what they learn in lecture and from the book.

•  Hundreds of self-graded practice prob-

lems allow students to test their understanding 

of concepts explained in the text, with immedi-

ate feedback.

•  The Metabolic Map helps students under-

stand the principles and applications of the 

core  metabolic pathways. Students can work 

through guided tutorials with embedded 

assessment questions, or explore the Metabolic 

Map on their own using the dragging and 

zooming functionality of the map.

•  Jmol tutorials by Jeffrey Cohlberg, California 

State University at Long Beach, teach students 

MEDIA AND ASSESSMENT

Figure 34.3 Recognition of a PAMP by a Toll-like receptor. The structure 
of TLR3 bound to its PAMP, a fragment of double-stranded RNA, as seen from 
the side (top) and from above (bottom). Notice that the PAMP induces  receptor 
dimerization by binding the surfaces on the side of each of the extracellular 
domains. [Drawn from 3CIY.pdb].

http://www.macmillanhighered.com/launchpad/berg8e
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   how to create models of proteins in Jmol based 

on data from the Protein Data Bank. By working 

through the tutorial and answering assessment ques-

tions at the end of each exercise, students 

learn to use this important database and fully 

realize the relationships between the structure 

and function of enzymes.

•  Living figures allow students to explore protein 

structure in 3-D. Students can zoom and rotate the 

“live” structures to get a better understanding of 

their three-dimensional nature and can experiment 

with different display styles (space-filling, ball-and-

stick, ribbon, backbone) by means of a user-friendly 

interface.

•  Concept-based tutorials by Neil D. Clarke help 

students build an intuitive understanding of some of 

the more difficult concepts covered in the textbook.

•  Animated techniques help students grasp experi-

mental techniques used for exploring genes and 

proteins.

•  NEW animations show students biochemical pro-

cesses in motion. The eighth edition includes many 

new animations.

•  Online end-of-chapter questions are assignable 

and self-graded multiple-choice versions of the 

end-of-chapter questions in the book, giving stu-

dents a way to practice applying chapter content in 

an online environment.

•  Flashcards are an interactive tool that allows 

 students to study key terms from the book.

•  LearningCurve is a self-assessment tool that helps 

students evaluate their progress. Students can test 

their understanding by taking an online multiple-

choice quiz provided for each chapter, as well as a 

general chemistry review.

Updated Student Companion

[1-4641-8803-3]

For each chapter of the textbook, the Student Companion 

includes:

• Chapter Learning Objectives and Summary

•  Self-Assessment Problems, including multiple-

choice, short-answer, matching questions, and chal-

lenge problems, and their answers

•  Expanded Solutions to end-of-chapter problems 

in the textbook
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  O U T L I N E  

  1.1    Biochemical Unity Underlies 

Biological Diversity  

  1.2    DNA Illustrates the Interplay 

  Between   Form and Function  

  1.3    Concepts from Chemistry 

Explain the Properties of 

Biological Molecules  

  1.4    The Genomic Revolution Is 

Transforming Biochemistry, 

Medicine, and Other Fields  

  Biochemistry is the study of the chemistry of life processes. Since the 

 discovery that biological molecules such as urea could be synthesized 

from nonliving components in 1828, scientists have explored the  chemistry 

of life with great intensity. Through these investigations, many of the most 

fundamental mysteries of how living things function at a biochemical level 

have now been solved. However, much remains to be investigated. As is 

often the case, each discovery raises at least as many new questions as it 

answers. Furthermore, we are now in an age of unprecedented opportunity 

for the application of our tremendous knowledge of biochemistry to 

 problems in medicine, dentistry, agriculture, forensics, anthropology, envi-

ronmental  sciences, alternative energy, and many other fields. We begin 

our journey into biochemistry with one of the most startling  discoveries 

of  the past  century: namely, the great unity of all living things at the 

 biochemical level.  

  1.1     Biochemical Unity Underlies Biological Diversity  

  The biological world is magnificently diverse. The animal kingdom is 

rich with species ranging from nearly microscopic insects to elephants 

and whales. The plant kingdom includes species as small and relatively 

  Chemistry in action.   Human activities require energy. The 

  interconversion   of different forms of energy requires large 

biochemical machines comprising many thousands of atoms such 

as the complex shown above. Yet, the functions of these elaborate 

assemblies depend on simple chemical processes such as the 

  protonation   and   deprotonation   of the carboxylic acid groups shown 

on the right. The photograph is of Nobel Prize winners Peter   Agre  , M.D., 

and Carol   Greider  , Ph.D., who used, respectively, biochemical 

techniques to reveal key mechanisms of how water is transported 

into and out of cells, and how chromosomes are replicated faithfully.   

  [Keith Weller for Johns Hopkins Medicine.]  
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CHAPTER 1 Biochemistry: 
An Evolving Science

simple as algae and as large and complex as giant sequoias. This diversity 

extends further when we descend into the microscopic world. Organisms 

such as protozoa, yeast, and bacteria are present with great diversity in 

water, in soil, and on or within larger organisms. Some organisms can 

survive and even thrive in seemingly hostile environments such as hot 

springs and glaciers.  

 The development of the microscope revealed a key unifying feature that 

underlies this diversity. Large organisms are built up of  cells,  resembling, to 

some extent, single-celled microscopic organisms. The construction of ani-

mals, plants, and microorganisms from cells suggested that these diverse 

organisms might have more in common than is apparent from their outward 

appearance. With the development of biochemistry, this suggestion has 

been tremendously supported and expanded. At the biochemical level, all 

organisms have many common features (Figure 1.1). 

 As mentioned earlier, biochemistry is the study of the chemistry of life 

processes. These processes entail the interplay of two different classes of 

molecules: large molecules such as proteins and nucleic acids, referred to as 

 biological macromolecules,  and low-molecular-weight molecules such as glu-

cose and glycerol, referred to as  metabolites,  that are chemically transformed 

in biological processes. 

 Members of both these classes of molecules are common, with minor 

variations, to all living things. For example,  d  eoxyribo  n  ucleic   a  cid  (DNA) 

stores genetic information in all cellular organisms.  Proteins,  the macromol-

ecules that are key participants in most biological processes, are built from 

the same set of 20 building blocks in all organisms. Furthermore, proteins 

that play similar roles in different organisms often have very similar three-

dimensional structures (Figure 1.1). 

O

OH

OH

CH2OH

OH

HO

Glucose

Glycerol

C HHO

CH2OH

CH2OH

Sulfolobus archaea Arabidopsis thaliana Homo sapiens

FIGURE 1.1 Biological diversity and similarity. The shape of a key molecule in gene 

regulation (the TATA-box-binding protein) is similar in three very different organisms that are 

separated from one another by billions of years of evolution. [(Left) Eye of Science/Science 

Source; (middle) Holt Studios/Photo Researchers; (right) Time Life Pictures/Getty Images.]
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1.1 Unity and Diversity

 Key metabolic processes also are common to many organisms. For 

example, the set of chemical transformations that converts glucose and oxy-

gen into carbon dioxide and water is essentially identical in simple bacteria 

such as  Escherichia coli (E. coli)  and human beings. Even processes that 

appear to be quite distinct often have common features at the biochemical 

level. Remarkably, the biochemical processes by which plants capture light 

energy and convert it into more-useful forms are strikingly similar to steps 

used in animals to capture energy released from the breakdown of glucose. 

 These observations overwhelmingly suggest that all living things on 

Earth have a common ancestor and that modern organisms have evolved 

from this ancestor into their present forms. Geological and biochemical find-

ings support a time line for this evolutionary path (Figure 1.2). On the basis 

of their biochemical characteristics, the diverse organisms of the modern 

world can be divided into three fundamental groups called  domains:   Eukarya  

(eukaryotes),  Bacteria,  and  Archaea . Domain Eukarya comprises all multicel-

lular organisms, including human beings as well as many microscopic unicel-

lular organisms such as yeast. The defining characteristic of  eukaryotes  is the 

presence of a well-defined nucleus within each cell. Unicellular organisms 

such as bacteria, which lack a nucleus, are referred to as  prokaryotes . The pro-

karyotes were reclassified as two separate domains in response to Carl 

Woese’s discovery in 1977 that certain bacteria-like organisms are biochemi-

cally quite distinct from other previously characterized bacterial species. 

These organisms, now recognized as having diverged from 

bacteria early in evolution, are the  archaea . Evolutionary 

paths from a common ancestor to modern organisms can 

be deduced on the basis of biochemical information. One 

such path is shown in Figure 1.3. 

 Much of this book will explore the chemical reactions 

and the associated biological macromolecules and metab-

olites that are found in biological processes common to all 

organisms. The unity of life at the biochemical level 

makes this approach possible. At the same time, different 

organisms have specific needs, depending on the particu-

lar biological niche in which they evolved and live. By 

comparing and contrasting details of particular biochemi-

cal pathways in different organisms, we can learn how 

biological challenges are solved at the biochemical level. 

In most cases, these challenges are addressed by the adap-

tation of existing macromolecules to new roles rather than 

by the evolution of entirely new ones. 

 Biochemistry has been greatly enriched by our ability 

to examine the three-dimensional structures of biological 

macromolecules in great detail. Some of these structures 
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are simple and elegant, whereas others are incredibly complicated. In any 

case, these structures provide an essential framework for understanding 

function. We begin our exploration of the interplay between structure and 

function with the genetic material, DNA. 

  1.2      DNA Illustrates the Interplay   Between   
Form and Function  

  A fundamental biochemical feature common to all cellular organisms is the 

use of DNA for the storage of genetic information. The discovery that DNA 

plays this central role was first made in studies of bacteria in the 1940s. This 

discovery was followed by a compelling proposal for the three-dimensional 

structure of DNA in 1953, an event that set the stage for many of the 

advances in biochemistry and many other fields, extending to the present.  

 The structure of DNA powerfully illustrates a basic principle common 

to all biological macromolecules: the intimate relation between structure 

and function. The remarkable properties of this chemical substance allow it 

to function as a very efficient and robust vehicle for storing information. We 

start with an examination of the covalent structure of DNA and its exten-

sion into three dimensions. 

  DNA is constructed from four building blocks  

  DNA is a   linear polymer   made up of four different types of monomers. It has 

a fixed backbone from which protrude variable   substituents  , referred to as 

bases (Figure 1.4). The backbone is built of repeating sugar–phosphate 

units. The sugars are molecules of   deoxyribose   from which DNA receives its 

name. Each sugar is connected to two phosphate groups through different 

linkages. Moreover, each sugar is oriented in the same way, and so each 

DNA strand has directionality, with one end distinguishable from the other. 

Joined to each   deoxyribose   is one of four possible bases: adenine (A), cyto-

sine (C), guanine (G), and thymine (T).  

 These bases are connected to the sugar components in the DNA backbone 

through the bonds shown in black in Figure 1.4. All four bases are planar 

but differ significantly in other respects. Thus, each monomer of DNA 

consists of a sugar–phosphate unit and one of four bases attached to the 

sugar. These bases can be arranged in any order along a strand of DNA. 
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  Two single strands of DNA combine to form a double helix  

  Most DNA molecules consist of not one but two strands (Figure 1.5). In 

1953, James Watson and Francis Crick deduced the arrangement of these 

strands and proposed a three-dimensional structure for DNA molecules. 

This structure is a   double helix   composed of two inter-

twined strands arranged such that the sugar–phosphate 

backbone lies on the outside and the bases on the inside. 

The key to this structure is that the bases form   specific base 

pairs   (  bp  ) held together by   hydrogen bonds   (Section  1.3): 

adenine pairs with thymine (A–T) and guanine pairs with 

cytosine (G–C), as shown in Figure 1.6. Hydrogen bonds 

are much weaker than   covalent bonds   such as the carbon–

carbon or carbon–nitrogen bonds that define the struc-

tures of the bases themselves. Such weak bonds are crucial 

to biochemical systems; they are weak enough to be 

reversibly broken in biochemical processes, yet they are 

strong enough, particularly when many form simultane-

ously, to help stabilize specific structures such as the 

double helix.  

FIGURE 1.5 The double helix. The double-helical structure of 

DNA proposed by Watson and Crick. The sugar–phosphate 

backbones of the two chains are shown in red and blue, and the 

bases are shown in green, purple, orange, and yellow. The two 

strands are antiparallel, running in opposite directions with respect 

to the axis of the double helix, as indicated by the arrows.
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1.2 DNA: Form and Function

  DNA structure explains heredity and the storage of information  

  The structure proposed by Watson and Crick has two properties of central 

importance to the role of DNA as the hereditary material. First, the structure 

is compatible with any sequence of bases. While the bases are distinct in 

structure, the base pairs have essentially the same shape (Figure 1.6) and 

thus fit equally well into the center of the double-helical structure of any 

sequence. Without any constraints, the sequence of bases along a DNA 

strand can act as an efficient means of storing information. Indeed, the 

sequence of bases along DNA strands is how genetic information is stored. 

The DNA sequence determines the sequences of the ribonucleic acid (RNA) 

and protein molecules that carry out most of the activities within cells.  

 Second, because of base-pairing, the sequence of bases along one strand 

completely determines the sequence along the other strand. As Watson and 

Crick so coyly wrote: “It has not escaped our notice that the specific pairing 

we have postulated immediately suggests a possible copying mechanism for 

the genetic material.” Thus, if the DNA double helix is separated into two 

single strands, each strand can act as a template for the generation of its 

partner strand through specific base-pair formation (Figure 1.7). The three-

dimensional structure of DNA beautifully illustrates the close connection 

between molecular form and function. 
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  1.3      Concepts from Chemistry Explain the Properties 
of Biological Molecules  

  We have seen how a chemical insight into the hydrogen-bonding capabili-

ties of the bases of DNA led to a deep understanding of a fundamental 

biological process. To lay the groundwork for the rest of the book, we begin 

our study of biochemistry by examining selected concepts from chemistry 

and showing how these concepts apply to biological systems. The concepts 

include the types of chemical bonds; the structure of water, the solvent in 

which most biochemical processes take place; the First and Second Laws of 

Thermodynamics; and the principles of acid–base chemistry.  

  The formation of the DNA double helix as a key example  

  We will use these concepts to examine an archetypical biochemical  process—

namely, the formation of a DNA double helix from its two component 

strands. The process is but one of many examples that could have been 

chosen to illustrate these topics. Keep in mind that, although the specific 

discussion is about DNA and double-helix formation, the concepts consid-

ered are quite general and will apply to many other classes of molecules and 

processes that will be discussed in the remainder of the book. In the course 

of these discussions, we will touch on the properties of water and the 

 concepts of   pK  a   and buffers that are of great importance to many aspects 

of biochemistry.  

  The double helix can form from its component strands  

  The discovery that DNA from natural sources exists in a double-helical 

form with Watson–Crick base pairs suggested, but did not prove, that such 

double helices would form spontaneously   outside biological systems. 

Suppose that two short strands of DNA were chemically synthesized to 

have complementary sequences so that they could, in principle, form 

a double helix with Watson–Crick base pairs. Two such sequences are 

CGATTAAT and ATTAATCG. The structures of these molecules 

in solution can be examined by a variety of techniques. In isolation, 

each sequence exists almost exclusively as a single-stranded molecule. 

However, when the two sequences are mixed, a double helix with 

Watson–Crick base pairs does form (Figure 1.8). This reaction pro-

ceeds nearly to completion.  

 What forces cause the two strands of DNA to bind to each other? 

To analyze this binding reaction, we must consider several factors: the 

types of interactions and bonds in biochemical systems and the ener-

getic favorability of the reaction. We must also consider the influence 

of the solution conditions—in particular, the consequences of acid–

base reactions. 

  Covalent and   noncovalent   bonds are important for the structure 
and stability of biological molecules  

  Atoms interact with one another through chemical bonds. These bonds 

include the covalent bonds that define the structure of molecules as well as 

a variety of   noncovalent   bonds that are of great importance to biochemistry.  

  Covalent bonds.    The strongest bonds are covalent bonds, such as the 

bonds that hold the atoms together within the individual bases shown on 

page 4. A covalent bond is formed by the sharing of a pair of electrons 

between adjacent atoms. A typical carbon–carbon (C}C) covalent bond has 

FIGURE 1.8 Formation of a double helix. When 

two DNA strands with appropriate, complementary 

sequences are mixed, they spontaneously assemble 

to form a double helix.
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a bond length of 1.54 Å and bond energy of 355 kJ mol �  1  (85 kcal mol �  1 ). 

Because covalent bonds are so strong, considerable energy must be expended 

to break them. More than one electron pair can be shared between two 

atoms to form a multiple covalent bond. For example, three of the bases in 

Figure 1.6 include carbon–oxygen (C“O) double bonds. These bonds are 

even stronger than C}C single bonds, with energies near 730 kJ mol �  1  

(175 kcal mol �  1 ) and are somewhat shorter. 

 For some molecules, more than one pattern of covalent bonding can be 

written. For example, adenine can be written in two nearly equivalent ways 

called  resonance structures.  
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 These adenine structures depict alternative arrangements of single and 

double bonds that are possible within the same structural framework. 

Resonance structures are shown connected by a double-headed arrow. 

Adenine’s true structure is a composite of its two resonance structures. The 

composite structure is manifested in the bond lengths such as that for 

the bond joining carbon atoms C-4 and C-5. The observed bond length of 

1.40 Å is between that expected for a C}C single bond (1.54 Å) and a 

C“C double bond (1.34 Å). A molecule that can be written as several 

 resonance structures of approximately equal energies has greater stability 

than does a molecule without multiple resonance structures. 

  Noncovalent   bonds.    Noncovalent bonds are weaker than covalent bonds 

but are crucial for biochemical processes such as the formation of a double 

helix. Four fundamental noncovalent bond types are  ionic interactions, 

hydrogen bonds,   van   der   Waals interactions,  and  hydrophobic interactions . 

They differ in geometry, strength, and specificity. Furthermore, these 

bonds are affected in vastly different ways by the presence of water. Let us 

consider the characteristics of each type: 

  1.   Ionic Interactions  . A charged group on one molecule can attract an oppo-

sitely charged group on the same or another molecule. The energy of an 

ionic interaction (sometimes called an electrostatic interaction) is given by 

the   Coulomb energy:  

 E 5 kq1q2/Dr 

   where  E  is the energy,  q  1  and  q  2  are the charges on the two atoms (in units of 

the electronic charge),  r  is the distance between the two atoms (in ang-

stroms),  D  is the dielectric constant (which decreases the strength of the 

Coulomb depending on the intervening solvent or medium), and  k  is a pro-

portionality constant (k  5  1389,   for energies in units of kilojoules per mole, 

or 332 for energies in kilocalories per mole). 

 By convention, an attractive interaction has a negative energy. The 

ionic  interaction between two ions bearing single opposite charges sepa-

rated by 3 Å in water (which has a dielectric constant of 80) has an energy 

of   2 5.8 kJ mol �  1  ( 2 1.4 kcal mol �  1 ). Note how important the dielectric 

 constant of the medium is. For the same ions separated by 3 Å in a nonpolar 

solvent such as hexane (which has a dielectric constant of 2), the energy of 

this interaction is  2 232 kJ mol �  1  ( 2 55 kcal mol �  1 ). 

q1 q2

r

Distance and energy units

Interatomic distances and bond lengths are 

usually measured in angstrom (Å) units:

1 Å 5 10210 m 5 1028 cm 5 0.1 nm

Several energy units are in common use. 

One joule (J) is the amount of energy required 

to move 1 meter against a force of 1 newton. 

A kilojoule (kJ) is 1000 joules. One calorie is 

the amount of energy required to raise the 

temperature of 1 gram of water 1 degree 

Celsius. A kilocalorie (kcal) is 1000 calories. 

One joule is equal to 0.239 cal.
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 2.  Hydrogen Bonds . These interactions are largely ionic interactions, with 

partial charges on nearby atoms attracting one another. Hydrogen bonds are 

responsible for specific base-pair formation in the DNA double helix. The 

hydrogen atom in a hydrogen bond is partially shared by two electronega-

tive atoms such as nitrogen or oxygen. The  hydrogen-bond donor  is the group 

that includes both the atom to which the hydrogen atom is more tightly 

linked and the hydrogen atom itself, whereas the  hydrogen-bond acceptor  is 

the atom less tightly linked to the hydrogen atom (Figure 1.9). The electro-

negative atom to which the hydrogen atom is covalently bonded pulls elec-

tron density away from the hydrogen atom, which thus develops a partial 

positive charge ( d  ϩ ). Thus, the hydrogen atom with a partial positive charge 

can interact with an atom having a partial negative charge ( d  Ϫ ) through an 

ionic interaction. 

 Hydrogen bonds are much weaker than covalent bonds. They have ener-

gies ranging from 4 to 20 kJ mol Ϫ  1  (from 1 to 5 kcal mol Ϫ  1 ). Hydrogen 

bonds are also somewhat longer than covalent bonds; their bond lengths 

(measured from the hydrogen atom) range from 1.5 Å to 2.6 Å; hence, a 

distance ranging from 2.4 Å to 3.5 Å separates the two nonhydrogen atoms 

in a hydrogen bond. 

 The strongest hydrogen bonds have a tendency to be approximately 

straight, such that the hydrogen-bond donor, the hydrogen atom, and the 

hydrogen-bond acceptor lie along a straight line. This tendency toward lin-

earity can be important for orienting interacting molecules with respect to 

one another. Hydrogen-bonding interactions are responsible for many of 

the properties of water that make it such a special solvent, as will be 

described shortly. 

  3.   van   der   Waals Interactions  .   The basis of a van   der   Waals interaction is 

that the distribution of electronic charge around an atom fluctuates with 

time. At any instant, the charge distribution is   not perfectly symmetric. 

This transient asymmetry in the electronic charge about an atom acts 

through ionic interactions to induce a complementary asymmetry in the 

electron distribution within its neighboring atoms. The atom and its 

neighbors then attract one another. This attraction increases as two atoms 

come closer to each other, until they are separated by the van   der   Waals 

  contact distance   (Figure 1.10). At distances shorter than the van   der   

Waals contact distance, very strong repulsive forces become dominant 

because the outer electron clouds of the two atoms overlap.  

 Energies associated with van der Waals interactions are quite small; 

typical interactions contribute from 2 to 4 kJ mol Ϫ  1  (from 0.5 to 1 kcal 

mol Ϫ  1 ) per atom pair. When the surfaces of two large molecules come 

together, however, a large number of atoms are in van der Waals contact, 

and the net effect, summed over many atom pairs, can be substantial. 

 We will cover the fourth noncovalent interaction, the hydrophobic inter-

action, after we examine the characteristics of water; these characteristics 

are essential to understanding the hydrophobic interaction. 

  Properties of water.  Water is the solvent in which most biochemical reac-

tions take place, and its properties are essential to the formation of macro-

molecular structures and the progress of chemical reactions. Two properties 

of water are especially relevant: 

  1.   Water is a polar molecule  . The water molecule is bent, not linear, and so 

the distribution of charge is asymmetric. The oxygen nucleus draws elec-

trons away from the two hydrogen nuclei, which leaves the region around 
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each hydrogen atom with a net positive charge. The water molecule is thus 

an electrically polar structure.  

  2.   Water is highly cohesive  . Water molecules interact strongly with one 

another through hydrogen bonds. These interactions are apparent in 

the structure of ice (Figure 1.11). Networks of hydrogen bonds hold the 

structure together; similar interactions link molecules in 

liquid water and account for many of the properties of 

water. In the liquid state, approximately one in four of the 

hydrogen bonds present in ice   are   broken. The polar nature 

of water is responsible for its high dielectric constant of 80. 

Molecules in aqueous solution interact with water mole-

cules through the formation of hydrogen bonds and through 

ionic interactions. These interactions make water a versatile 

solvent, able to readily dissolve many species, especially 

polar and charged compounds that can participate in these 

interactions.  

  The hydrophobic effect.    A final fundamental interaction 

called the  hydrophobic effect  is a manifestation of the proper-

ties of water. Some molecules (termed  nonpolar   molecules ) 

cannot participate in hydrogen bonding or ionic interac-

tions. The interactions of nonpolar molecules with water 

molecules are not as favorable as are interactions between 

the water molecules themselves. The water molecules in 

contact with these nonpolar molecules form “cages” around 

them, becoming more well ordered than water molecules free in solution. 

However, when two such nonpolar molecules come together, some of the 

water molecules are released, allowing them to interact freely with bulk 

water (Figure 1.12). The release of water from such cages is favorable for 

reasons to be considered shortly. The result is that nonpolar molecules 

show an increased tendency to associate with one another in water 

 compared with other, less polar and less self-associating, solvents. This 

tendency is called the hydrophobic effect and the associated interactions 

are called  hydrophobic interactions . 

  The double helix is an expression of the rules of chemistry  

  Let us now see how these four   noncovalent   interactions work together in 

driving the association of two strands of DNA to form a double helix. First, 

each phosphate group in a DNA strand carries a negative charge. These 

negatively charged groups interact unfavorably with one another over dis-

tances. Thus, unfavorable ionic interactions take place when two strands of 

FIGURE 1.11 Structure of ice. Hydrogen bonds (shown as 

dashed green lines) are formed between water molecules to 

produce a highly ordered and open structure.

FIGURE 1.12 The hydrophobic 
effect. The aggregation of nonpolar 

groups in water leads to the release of 

water molecules, initially interacting with 

the nonpolar surface, into bulk water. The 

release of water molecules into solution 

makes the aggregation of nonpolar groups 

favorable.
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